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Given the high whittling down rates, high costs, and moderate pace of new

medication, revelation, and improvement, repurposing “old” drugs to treat

typical and uncommon illnesses is progressively becoming an appealing

proposition. Drug repurposing is the way toward utilizing existing

medications in treating diseases other than the purposes they were initially

designed for. Faced with scientific and economic challenges, the prospect of

discovering new medication indications is enticing to the pharmaceutical

sector. Medication repurposing can be used at various stages of drug

development, although it has shown to be most promising when the drug

has previously been tested for safety. We describe strategies of drug

repurposing for Parkinson’s disease, which is a neurodegenerative condition

that primarily affects dopaminergic neurons in the substantia nigra. We also

discuss the obstacles faced by the repurposing community and suggest new

approaches to solve these challenges so that medicine repurposing can reach

its full potential.
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1 Introduction

Drug reprofiling history goes back to 1950; however, Ted T Ashburn and Karl B. Thar

were the first to introduce the inception of drug repositioning in 2004 (Langedijk et al.,

2015). Initially, people were unaware of this term, although this method was practiced in

the late 1990s with the repositioning of thalidomide (Emanuel Almeida Moreira de

Oliveira1, 2018). It is a fact that traditional drug development is complicated and tiresome
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(Gupta et al., 2021). Drug reprofiling or redirecting is a very

attractive, economical, and time-saving process because this

approach includes adding newer indications to the previously

existing drugs (Steinhagen, 2011). This approach has succeeded

in reducing the total period of drug development on average by

3–12 years, as shown in Figure 1. According to one of the studies

in recent years, more than 30% of the US Food and Drug

Administration (FDA)-approved drugs and vaccines have

undergone the drug repurposing process (Jin and Wong,

2014). This tremendous achievement has opened the doors for

researchers and drug developers interested in drug repurposing

(Schonfeld, 2014).

Currently, many pharmaceutical firms are involved in drug

research and development and are looking for innovative and

economic approaches to treat diseases in better ways (Khanna,

2012). Such firms have allocated enormous proportions of money

for research and development to support drug discovery and

development. In recent years, it has been observed that research

and development budgets have been significant (Mizushima,

2011). The massive success in repositioning sildenafil (Viagra),

one of Pfizer’s products, has proved the landmark in drug

repositioning (Dhir et al., 2020). The phase I clinical trial of

sildenafil had a minimal effect against angina pectoris (primarily

indication) with marked penile erection (Lue, 2000). Later, in

1998, researchers considered sildenafil to be the only regimen for

erectile dysfunction and marketed it in the U.S under the brand

name Viagra (Srinath and Kotwal, 1999).

Similarly, thalidomide was initially withdrawn from clinical

use and was later rediscovered for its secondary action (Bartlett

et al., 2004). Thalidomide was developed as a sedative and

recommended to pregnant women to treat morning sickness,

but this drug caused severe birth skeletal abnormalities in

children (Vargesson, 2019). Thalidomide was banned due to

its side effects, but later on, it was rediscovered as an inhibitor of

TNF-α and was used to treat the condition erythema nodosum

laprosum (ENL) (Ashburn and Thor, 2004a). It is also

antiangiogenic, which led to its use as an anticancer agent for

treating multiple myeloma (Gillies, 2016). Hence, there is always

a possibility of repurposing and rediscovering a drug (Fetro and

Scherman, 2020). Ramosetron is another drug that was initially

used as an antiemetic (Desai et al., 2013). Later, it was reprofiled

for irritable bowel syndrome because of its side effect,

constipation (Graul et al., 2009). Therefore, drug repurposing

includes scientific recreation of pharmacological activities of

current drugs (Ashburn and Thor, 2004b).

Parkinson’s disease is a condition that still has a lot of unclear

questions about its treatment despite a long history of its study

(Seppi et al., 2019). More and more drugs that have a

pharmacodynamic effect on the components of the

pathogenesis of PD are undergoing clinical trials in order to

FIGURE 1
Comparison analysis between the traditional drug discovery approach and drug reprofiling.
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TABLE 1 Success stories in drug repositioning.

S.
no

Drug name Primary
indication

Primary
manufacturer

Repositioning
indication

Repositioning
manufacturer

Year (FDA
approval)/
current status

1 Amitriptyline Antidepressant Sandoz Neuropathic pain Astra Zeneca 2005

2 Amphotericin B Antifungal ------ Leishmaniasis NeXstar
Pharmaceuticals

1997

3 Aspirin Analgesic/anti-
inflammation

Many Anti-platelet/stroke/heart attack ------- ------

4 Atomoxetine Parkinson’s disease Eli Lilly Attention-deficit hyperactivity
disorder (ADHD)

Eli Lilly 2002

5 Bupropion Antidepressant GSK Smoking cessation GSK 1997

6 Bleomycin Antibiotic BMS Cancer Kayaku/BMS 1973

7 Bromocriptine Parkinson’s disease Sandoz Type II diabetes Novartis 2009

8 Buprenorphine Pain Reckitt Benckiser Opiate dependency Reckitt Benckiser 2002

9 Chlorpromazine Antiemetic/
antihistamine

Rhone-Poulenc Non-sedative tranquilizer SmithKline Not clear

10 Clofazimine Tuberculosis Novartis Leprosy Novartis 1986

11 Cyclosporine Organ transplant
rejection

Psoriasis/RA Novartis 1997

12 Cycloserine Tuberculosis CNS

disorder Many Many

13 Dapoxetine Analgesic/
antidepressant

Eli Lilly Premature ejaculation Johnson & Johnson 2004

14 Duloxetine Antidepressant/GAD Eli Lilly Stress urinary incontinence Eli Lilly 2004

------------ --------- Fibromyalgia Eli Lilly 2008

Musculoskeletal pain Eli Lilly 2010

15 Donepezil Alzheimer’s disease Eisai Dementia Eisai/Pfizer 2006

16 Eflornithine Cancer/

Anti-infective Bristol-Myers Squibb Hirsutism

Sleeping sickness Gillette Aventis 1990

2000

17 Etanercept Rheumatoid arthritis Pfizer Plaque psoriasis Amgen/Pfizer 2004

18 Fluoxetine Antidepressant Eli Lilly Premenstrual dysphoria Eli Lilly 2000

19 Finasteride Hypertension Merck BPH Merck 1992

Male

pattern Merck 1997

baldness

20 Galantamine Polio/paralysis/
anesthesia

Sopharma Alzheimer’s disease Many 2001

21 Gabapentin Seizure Parke-Davis Post herpetic neuralgia Parke-Davis 2004

22 Glycopyrronium Anti-ulcer Sosei/ COPD Sosei/Novartis 2015

Novartis

Excessive underarm 2018

sweating

23 Ibuprofen Inflammation/pain Boots laboratories OA/RA/headache ------- -------

/migraine

24 Imatinib Chronic myelogenous
leukemia

Novartis Gastrointestinal stromal tumors Novartis 2001

25 Infliximab Autoimmune diseases Janssen Biotech Crohn’s disease Janssen Biotech 1998

26 Mifepristone Pregnancy termination Danco Laboratories Psychotic major depression Corcept 2000

(Continued on following page)
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optimize modern therapy and search for new ways to use known

drugs (Deleu et al., 2002).

2 Significance of drug reprofiling

Due to its associated issues, the failure of traditional drug

discovery has diverted the focus toward drug reprofiling (coined

as drug repurposing, drug repositioning, drug re-tasking, or

therapeutic switching), which is less time-consuming, cost-

practical, and more effective. As the pharmacologist and

Nobel laureate James Black said, “The most fruitful basis for

the discovery of a new drug is to start with an old drug”

(Pantziarka et al., 2018).

Reprofiling has an extra advantage over the traditional

approach as new approaches overcome major drug discovery

problems (Ashburn and Thor, 2004a). The survey report of

expenses utilized in reprofiling in 2007 concluded that the cost

to reprofile a drug averages $8.4 million (Agrawal, 2015). The

success rate of reprofiled drugs is also higher than that of the

traditional approach because of the established profiles of

these compounds (Pushpakom et al., 2019). According to a

survey report published in 2007, only 25% of drugs from phase

II and 65% from phase III clinical trials reached the market

compared to new molecular entities, which are 10% and 50%

(Pantziarka et al., 2018). In addition, the complete picture of

the successful report from the preclinical stage to the

approved status is reported in Table 1 as drug reprofiling

has additional significance over standard drugs because the

repurposed drug already has a different test for various

toxicity and side effects (Polamreddy and Gattu, 2019).

These drugs have already passed through clinical trials,

which reduces the development cost for prescriptions (Sun

et al., 2016). According to a recent report based on a survey of

30 pharmaceutical industries and biotechnology companies,

introducing a drug again as repurposed averages $8.4 million,

while the price for research and development of a new

101 molecule is very high, averaging $41.3 million (Naylor

et al., 2015). They also have a higher success rate than the

original drugs because of known and tested information

regarding their pharmacology, formulation stability,

potential toxicity, safety, and adverse effects (Wen et al.,

2015). However, introducing a new drug to the market

requires clinical trials, scrutinizing tests on different

TABLE 1 (Continued) Success stories in drug repositioning.

S.
no

Drug name Primary
indication

Primary
manufacturer

Repositioning
indication

Repositioning
manufacturer

Year (FDA
approval)/
current status

27 Minoxidil Hypertension Pharmacia &Upjohn Hair loss Pfizer 1998

28 Methotrexate Cancer ------- Psoriasis/RA Barr Labs 2001

29 Naltrexone Opioid/alcohol
addiction

Endo Laboratories Weight loss Orexigen/Jakeda 2014

30 Paclitaxel Cancer National Cancer
Institute

Restenosis Angiotech/Boston
Scientific

2004

31 Phentolamine Hypertension Novartis Impaired vision Ocularis Pharma

32 Paroxetine Antidepressant GSK Menopausal hot flashes GSK 2013

33 Pertuzumab Various cancers Genetech HER-2/breast cancer Genetech 2013

34 Ropinirole Hypertension SmithKline Beecham Parkinson’s disease GSK 1997

Restless leg syndrome GSK 2005

35 Raloxifene Osteoporosis Eli Lilly Breast cancer Eli Lilly 2007

36 Retinoic acid Acne -------- Acute myeloid leukemia Hoffman-La 1995

Roche

37 Rituximab Various cancers Genetech/Biogen Rheumatoid arthritis IDEC 2004

38 Sibutramine Antidepressant Boots Company Obesity Abbott 1997

39 Sildenafil Angina Pfizer Erectile dysfunction Pfizer 1998

40 Sunitinib GIST/RCC Pfizer Pancreatic tumors Pfizer 2010

41 Thalidomide Anti-nausea Chemie Grüenthal Leprosy Celgene 1998

Multiple myeloma

2006

42 Tadalafil Anti-inflammatory/CV
diseases

GSK Male erectile dysfunction Eli Lilly and ICOS 2003

43 Topiramate Epilepsy J&J Obesity J&J 2003
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TABLE 2 List of drugs being repurposed and in clinical trials for PD.

Drug MOA Original use Proposed use Comments

Tetracycline (Bortolanza
et al., 2018)

Inhibits the initiation of translation
by binding to the 30S subunit

Antibiotic Antiapoptosis , anti-
inflammation, and MMP
inhibition in PD

Phase II clinical trial

Multitarget antibiotic

N-Acetylcysteine (Delgobo
et al., 2019)

Mucolytic agent For cystic fibrosis and
acetaminophen toxicity

Antioxidant, anti-inflammatory
agent, and neurotrophic factor

IV NAC raised brain glutathione
levels in clinical trials

MSDC-0160 (Athauda and
Foltynie, 2018; Savitt and
Jankovic, 2019)

Stimulates progenitor cells to
differentiate into brown-like fat cells
rather than white fat cells in vivo

Originally formulated for
type 2 DM

Targets MPC modulating
cellular function

Phase I, preclinical. The Cure
Parkinson’s Trust (CPT) is
working on it and finding new
approaches

β2AR agonist salbutamol
(Magistrelli and Comi,
2019)

Aids in relaxation of smooth muscle
in the lungs by coupling to a
stimulatory G protein of adenylyl
cyclase

Respiratory diseases Reduces SNCA expression and
is an inhibitor of

Use of β2AR agonists is rapidly
growing

microglia activation

Simvastatin (Tong et al.,
2018)

A specific inhibitor of (HMG-CoA) It lowers cholesterol in
cardiovascular diseases

Inhibits NADPH oxidase/
p38 activation and enhances the
expression of antioxidant
proteins

Phase II. Recent studies have
showed the protective effect of
statins, but they disappeared
when they were adjusted for
cholesterol

reductase, the enzyme that catalyzes
the conversion of HMG- CoA to
mevalonate

Deferiprone (Sun et al.,
2018)

Forms complexes with iron Fe chelating agent Study was conducted on the
effect of conservative Fe
chelation with

Phase II

30 mg/kg/day of deferiprone
in PD

Exenatide (Aaseth et al.,
2018)

Glucagon-like peptide receptor
stimulator

Increases insulin release and
decreases glucagon release

Neuroprotective ability Phase II

A first drug which slows PD
progression

Ursodeoxycholic acid
(UDCA) (Bell et al.,2018)

Reduces elevated liver enzyme levels
by facilitating bile flow through the
liver and protecting liver cells

Secondary bile; it reduces
cholesterol absorption and
dissolves gallstones

Improves mitochondrial
function and redistributes
Drp1 in fibroblasts

Phase II

Improves mitochondrial
function and redistributes
Drp1 in fibroblasts

Isradipine (Liss and
Striessnig, 2019)

Inhibits Ca2+ entry into excitable cells L-type Ca2+ channel blocker Neuroprotective ability Phase III

Final study results were expected
in winter 2019

Ambroxol (Silveira et al.,
2019b)

Stimulates mucus production and
stimulates synthesis of the surfactant
and their release by type
2 pneumocytes

Mucolytic agent Increases levels of the GCase
enzyme

Phase II

Clinical trials may have a large
impact on disease-modifying
therapies in PD

(Continued on following page)
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TABLE 2 (Continued) List of drugs being repurposed and in clinical trials for PD.

Drug MOA Original use Proposed use Comments

Minocycline (Cankaya
et al., 2019)

Suppresses viral replication by
reducing T-cell activation

Antibiotic Treatment induces functional
regeneration that is
dopaminergic neuron
activity–dependent

Neuroprotective effects in PD
experimental models have been
reported since 2001

Doxycycline (Santa-Cecilia
et al., 2019)

Inhibits bacterial protein synthesis by
binding to the 30S ribosomal subunit

Antibiotic Antiapoptotic and anti-
inflammatory mechanisms

DOX

involving the downregulation of
MMPs

Inhibits α-synuclein aggregation
and prevents cytotoxicity in
dopaminergic cell lines

Atomoxetine (Yssel et al.,
2018)

Prevents the reuptake of
norepinephrine and inhibits the
reuptake of dopamine

1 Noradrenaline reuptake
inhibitor

It, alone or in combination,
reduces the motor deficit
induced by a nigrostriatal lesion
in rats

Phase IV

Treatment of ADHD

Omega-3 fatty acids Essential fatty acid of the diet, present
in the brain

Essential fatty acid the of diet,
present in the brain

Prevention of cognitive
dysfunctions

Normalizing the antioxidant
mechanism in the brain(da Silva et al., 2008;

Alquraan et al., 2019)

Topiramate (Silverdale
et al., 2005b)

Blocks voltage-dependent sodium
and calcium channels

Epilepsy Reduces levodopa-induced
dyskinesia and manages
impulse control disorder in PD

Terminated in Phase II

Astemizole
(Styczynska-Soczka et al.,
2017)

Competitive antagonism of
histamine binding to cellular
receptors

Second-generation
H1 histamine antagonist

Improvement of motor
functions and the survival rate

Withdrawal from the market due
to rare fetal side effects

Sex steroids (Bourque et al.,
2019)

Stimulate estrogenic actions in tissues
such as the liver, bone, and
cardiovascular system but known to
block estrogen action

Selective estrogen receptor

modulators Useful in erectile dysfunction
related to PD

In order to develop personalized
medicine, estrogens could be
used in priority for women

Rivastigmine (Smith and
Peall, 2018)

Inhibits both butyrylcholinesterase
and acetylcholinesterase

Parasympathomimetic agent Improves L-dopa availability
and has favorable effects on
cognition, psychiatric
symptoms, and dementia

Phase II

Guidelines from the American

Academy of Neurology have

recommended rivastigmine for

patients with PD

Efilevodopa (Rao and Rao,
2009; Ogawa, 1994a;
Ogawa, 1994b)

Delivers dopamine to the brain Levodopa ethyl ester
dopamine agonist

Increases the efficacy of
levodopa

Phase III

Istradefylline (KW-6002)
(Nagayama et al.,2019)

Exhibits inhibitory function on most
of the tissues

Adenosine A2 receptor
antagonist

To treat mood disorders in PD Phase III

NeuroCell (Palmer
et al.,2019)

Surgery Cell transplant therapy Surgery Phase III
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models, and might be a waste of time, money, and effort

(Califf, 2006). Instead of submitting a new drug to the market,

using medications with known indications is more favorable

(Rask-Andersen et al., 2011). Developing a new drug costs

roughly one billion dollars, while reprofiling takes 60% less

time than developing a novel drug and is less costly (Silverdale

et al., 2005a; Silveira et al., 2019a).

Companies like Pfizer, Novartis, Eli Lilly, Biovista, and SOM

Biotech are involved in the drug reprofiling process (Sekhon,

2013). Due to its associated issues, traditional drug discovery

failures have shifted the focus toward drug reprofiling, which is

not a cost-effective, time-saving, and more effective technique

(Parvathaneni et al., 2019). According to the pharmacologist and

Nobel laureate James Black, “The most fruitful basis for

discovering a new drug is to start with an old drug”

(Pantziarka et al., 2018).

Drug re-profiling has an extra advantage compared to the

traditional approach because the new methods overcome the

significant problems of drug discovery (Ashburn and Thor,

2004a). According to a survey report in 2007, the average

expense in reprofiling was $8.4 million (Agrawal, 2015). The

established profiles of these compounds achieved the success

rate of reprofiled drugs higher than that of the traditional

approach (Tobinick, 2009). The survey report published in

2007 showed that only 25% of drugs from phase II and 65%

from phase III clinical trials reached the market compared to

new molecular entities, which are 10% and 50% (Pantziarka

et al., 2018). A complete picture of the success report from

preclinical to clinical trials is reported in Table 2 (Polamreddy

and Gattu, 2019).

3 History andmolecular pathogenesis
of PD

PD is the second most known neurodegenerative disease

(Seppi et al., 2019). Approximately 7–10 million humans around

the globe are affected by this disease, i.e., approximately one

percent of the world population (Ismail et al., 2019). In North

America, 0.075 million newly diagnosed individuals are added up

each year to this count (Crippa et al., 2019). James Parkinson, in

1817, published an essay, “Shaking Palsy” (Pandey, 2012). Later,

William Rutherford Sanders, in 1876, was the first to use the term

“Parkinson” in the medical panorama (Lewis et al., 2020).

Bradykinesia is the principal feature of PD along with other

motor deficits, i.e., rest tremors, gait, postural instabilities,

agitation, swallowing disturbances, and slurred speech

(Pandey, 2012). Non-motor co-morbidities include cognitive

disorders, neuropsychological disorders, sleep disorders,

orthostatic hypotension, constipation, bladder dysfunction,

and sexual dysfunction (Poewe and Mahlknecht, 2009;

Shkodina et al., 2022). The central issue of currently available

treatment is motor response fluctuation or on–off treatment

(Emanuel and Karen, 2018). Another problem encountered

after a few years of treatment was patients complaining of the

wear-off effect (Pandey, 2012). The exact etiology of PD remains

a challenge for researchers as about 85% of idiopathic PD and

only 15% are caused by a mutation in specific genes responsible

for altering functions of various proteins (Kalinderi et al., 2016).

The proposed etiologies are thought to arise in genetically

sensitive individuals or might have environmental impacts on

the molecular levels, such as insecticides, other toxins, or

teratogenic causes (Emanuel and Karen, 2018). Rotenone, an

insecticide and toxin MPTP, was used to induce PD in animal

studies (Emanuel and Karen, 2018). PD is a neurodegenerative

disorder of aging individuals with predominantly slow

degradation of dopaminergic neurons in the substantia nigra

pars compacta part of the brain (involved in motor function),

which subsequently results in a decline in levels of the

neurotransmitter dopamine in the striatum (Maiti et al.,

2017). Synuclein (Lewy bodies) aggregation in the brain is the

hallmark of PD isolated in 1997 (Baba et al., 1998). α-Synuclein is
an essential protein, and its aggregation results in motor deficits

(George and Brundin, 2015). Its post-translational modification,

such as oligomerization or false synuclein aggregation, causes PD

(Stoker et al., 2018). Molecular alteration and underlying causes

of PD are evaluated in different studies (Zhou et al., 2008).

Protein kinases and signaling pathways that are linked, tested,

and assessed for relation in PD are phosphatase and tensin

homolog (PTEN)-induced putative kinase 1 (PINK1) and

leucine-rich repeat kinase 2 (LRRK2) (Alessi, Sammler, 2022).

PINK1 and LRRK2 with associated protein kinase B (AKT) and

c-Jun N-terminal kinase (JNK) signaling pathways have proven

to be strong footings in PD (Mehdi et al., 2016). α-Synuclein
(SNCA) proteins are produced by soma cells and play a prime

role in the pathophysiology of PD (Stefanis, 2012). Usually, α-
synuclein is distributed in the axon and stays in nerve terminals

(Uchihara and Giasson, 2016). They function as the maintenance

of synaptic balance and transmission of nerve impulses (Bendor

et al., 2013). Synuclein is a protein with three domains: the

(amino) N-terminal domain, hydrophobic domain, and

(carboxyl) C-terminal domain (Jagannatha Rao, 2007). The

hydrophobic domain, also known as NAC, is essential for the

conversion of synuclein to an oligomer; in addition, it is believed

to mediate a conformational change to the random coil to the

beta-sheet structure upon aggregation (Uversky and Eliezer,

2009). The presence of the NAC region in α-synuclein
discriminates it from beta- and gamma synuclein, and it is

responsible for the induction of accumulation of these

proteins (Brás and Outeiro, 2021).

Cellular homeostasis involves protein degradation through

the ubiquitin–proteasomal system (UPS) and different types of

autophagy (Tolosa, 2010). Chaperone-mediated autophagy

(LeWitt et al., 2007) pathways are involved in α-synuclein
elimination under normal conditions (Tolosa, 2010). The

SNCA sequence at the 95–99 residue VKKDQ configuration
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resembles the lysosomal surface receptor LAMP-2A (Tolosa,

2010). However, due to mutation in α-synuclein, binding and

autophagy through lysosomes are disturbed, and they begin to

oligomerize and aggregate within neurons (Gorman, 2008).

Accumulation of α-synuclein in a considerable amount results

in Lewy bodies, and neurons gradually become less functional

and disappear as in PD pathogenesis, the neuron count in the

substantia nigra is decreased (Fahn, 2003). Mutations in LRRK2

genes also play a significant role in PD pathogeneses (Rocha et al.,

2022). It has domains like protein kinase and GTPase, the later

environment being dominant in pathological changes (Taylor

and Alessi, 2020). Phosphorylation of a group of RAB proteins by

LRRK2 causes radical changes in essential aspects of autophagy

and lysosomal physiology (Alessi and Sammler, 2022).

LRRK2 mutations encompass almost all PD categories, like

familial PD, idiopathic late-onset PD, autosomal dominantly

inherited PD, and sporadic PD (Mehdi et al., 2016).

The second most typical cause of falling recessive PD is an

alteration in PTEN-induced PINK1, commonly termed DJ-1

(Balestrino and Schapira, 2020). It is responsible for handling

mitochondrial DNA levels, ATP production, calcium handling,

and regulating free radical generation, and alteration in these

functions can lead to apoptosis (Schapira, 2008). This change in

PINK1 causes a reduction in the kinase activity related to atypical

PD and causes the early age onset and slow progression of the

disease (Valente et al., 2004). Alteration in PINK1 functionalities

is also linked to familial juvenile PD around 1–8% (Myhre et al.,

2008).

One of the molecular pathways of PD pathogenesis is

oxidative stress, which is caused by the accumulation of

reactive oxygen species (ROS) because of a deficiency in

antioxidant systems that leads to cell death, including

apoptosis, parthanatos, necroptosis, and autophagic cell

death (Trist et al., 2019). Some genetic risk factors are also

associated with mitochondrial dysfunction in dopaminergic

neurons, which makes a significant contribution to the

development of oxidative stress in PD (Dias et al., 2013).

This complexity and multidimensionality of the

pathogenesis of PD make it difficult to find an appropriate

drug therapy (Krüger et al., 2017).

4 Available treatments and their
limitations

There are currently no disease-modifying treatments for

PD, and dopaminergic medications constitute the mainstay of

treatment (Stoker et al., 2018). Preparations of levodopa, the

precursor of dopamine, are the most widely utilized, and they

are given in combination with a dopa-decarboxylase inhibitor

to reduce some of the side effects, such as nausea (Deleu et al.,

2002). Ropinirole and rotigotine, which are dopamine

agonists, are also used (LeWitt et al., 2007). Endogenous

dopamine metabolism can be slowed using monoamine

oxidase B inhibitors like rasagiline and selegiline, as well as

catechol-O methyltransferase (COMT) inhibitors like

entacapone (Chen and Swope, 2007). Treatments for PD

can restore dopaminergic function in the striatum, resulting

in improvements in motor symptoms (Calabresi et al., 2000).

They do not, however, cure many non-motor symptoms,

which are very disabling for many individuals (Pfeiffer,

2016). Some non-motor symptoms, such as postural

hypotension and neuropsychiatric issues, may be

exacerbated by therapy in a few cases (Worth, 2013).

The majority of people who receive dopamine replacement

medication suffer aberrant involuntary movements, such as

L-DOPA-induced dyskinesia (Myhre et al., 2008). It is

debilitating, and there is only one drug that can help,

amantadine (Buck and Ferger, 2010). Repurposing compounds

that have been shown to be safe in humans at phase II or higher

can be a very efficient way to get new therapies to patients quickly

(Schein, 2020). Repurposing avoids many high-risk phases of the

drug development process (Rudrapal et al., 2020). During

repurposing, development for a further indication at phase IIa

is significantly less costly, takes as little as 4 years, and has an

~3,000 times higher chance of reaching patients than a novel

drug (Singh et al., 2020). We focus on historical and modern

techniques to discover possible repurposed medications, propose

mechanisms to prioritize the testing of new compounds, and

highlight hurdles, particularly in the translation from preclinical

testing to phase II clinical proof-of-concept studies (Crippa et al.,

2019).

Antidyskinetic effects of NMDA antagonists were

described in animal models of PD, including the MPTP-

lesioned non-human primate, around 30 years after the

discovery of amantadine (NHP) (Jakowec and Petzinger,

2004). These findings prompted a re-evaluation of

amantadine’s effects in PD, and two separate groups

reported a reduction in L-DOPA-induced dyskinesia in

patients on amantadine in 1998, arguing for the drug’s

usage as an antidyskinetic agent (Myhre et al., 2008). The

off-label use of immediate-release amantadine has been

shown to provide significant relief of LID in up to one-

third of patients (Vijverman and Fox, 2014). In

some individuals, long-term amantadine use, at least, to

date, in the immediate release form may be compromised

by tachyphylaxis, which has been reported to occur as early as

6 months of usage (Deleu et al., 2002). Long-term use

does, however, provide clinical benefits for many patients

(Wolf et al., 2010). Amantadine is also poorly tolerated

because of cognitive issues, like confusion and

hallucinations, and some non-cognitive side effects, like

ankle edema (Jackson et al., 2009). It is not appropriate

for individuals with renal failure (deVries et al., 2019).

Relatively better tolerability of the extended-release

amantadine is observed by the once-daily dosing at night,
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but long-term clinical use is yet required to confirm this

proposition (Sharma et al., 2018).

With a better understanding of the CB1 cannabinoid

receptor’s role in the control of basal ganglia transmission,

another possible repurposing candidate was identified in the

mid-1990s (Johnston et al., 2019). Indeed, the CB1 agonist

nabilone, which is used to treat chemotherapy-related nausea,

was demonstrated to diminish LID in NHPs that had been

lesioned with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

(MPTP) (Johnston et al., 2019). These findings, however, have

not led to widespread usage of nabilone in LID due to non-

efficacy concerns (Johnston et al., 2019). It was hypothesized that

focusing on it would alter firing patterns and lower LID in a way

that had previously been validated, albeit more invasively, with

deep-brain stimulation (Heumann et al., 2014). As a result of this

idea, the anticonvulsant levetiracetam was identified as a

potential repurposing candidate (Bezard et al., 2004). In the

MPTP-NHP model, levetiracetam activates SV2A and exhibits

strong antidyskinetic efficacy (Johnston et al., 2019). However,

because the drug was poorly tolerated in the PD patient

population, these improvements could not be converted into

effectiveness in phase II trials (Wong et al., 2011). Nabilone and

levetiracetam are two examples of repurposing drugs that

emphasize the relevance of efficacy and tolerability (Crippa

et al., 2019).

Exenatide, a well-known diabetic medication for type

2 diabetes and a glucagon-like peptide-1 (GLP-1) agonist,

and nilotinib, a tyrosine kinase inhibitor, have both recently

been repurposed and tested in PD patients (Fletcher et al.,

2021). At the same time, nilotinib is used to treat chronic

myelogenous leukemia; thus, data on their safety and

tolerability in patient populations already exist, which has

aided their advancement through clinical studies, which have

shown promising results (Athauda and Foltynie, 2018). In

toxin-based mouse models of nigrostriatal degeneration,

exenatide has been demonstrated to have neuroprotective

and neurorestorative effects, enhancing motor function,

behavior, learning, and memory (Athauda and Foltynie,

2015). Nilotinib has been shown to improve misfolded α-

synuclein, making it a promising candidate for lowering

TABLE 3 Repurposed drugs reported in the literature with FDA-approved status for the treatment of Parkinson’s disease.

Drug MOA Original use/brand
name/
originator firm

New use/brand
name/
repositioner
firm

FDA
approval
of
repurposed
drugs

MOA of the
new target

Ropinirole
hydrochloride
(Weintraub et al., 2006)

----- Hypertension Parkinson’s disease September 1997 D2 agonist

Dopamine agonist----- Requip

SmithKline Beecham GlaxoSmithKline

Amantadine (Rascol
et al., 2021)

Anticholinergic agent Influenza, antiviral Parkinson disease
dyskinesia

August 2017 NMDA receptor antagonist

M2 protein inhibitor Symmetrel GOCOVRI Dopamine release and reuptake inhibitor

Endo Pharmaceuticals Adamas
Pharmaceuticals

Rasagiline (DeMaagd
and Philip, 2015b)

------- In 1960, antidepressant and
antihypertensive developed

Parkinson’s disease
Azilect

May 17 MAO-B

in the 1970s. Aspro
Nicholas

Teva Pharmaceuticals 2006 Inhibitor

Pimavanserin Inverse agonist and
antagonist

Antipsychotic agent Hallucinations and 29 April 2016 Non-dopaminergic, selective serotonin
inverse agonist (SSIA) for the treatment of
psychosis associated with PDactivity at serotonin 5-

HT2A receptors
delusions associated

with PD

Nuplazid

Acacia Pharma

Memantine (Hsu et al.,
2018)

------ Influenza and Alzheimer’s
disease

Parkinson’s disease
cognitive deficit

------ It inhibits enzyme NMDA receptor

Merz & Co.
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SNCA levels via autophagy (Pagan et al., 2016). PD has

been linked to higher levels of c-abl, which is thought to

enhance the phosphorylation and aggregation of SNCA

(Lindholm et al., 2016). Furthermore, an increase in the

c-abl activity reduces the action of parkin, a key protein

in mitochondrial biogenesis whose mutations cause familial

PD (Brahmachari et al., 2017). Nilotinib has been shown to

attenuate exogenously expressed SNCA levels in mice and

reduce SNCA-induced nigral degeneration (Wong and

Krainc, 2017). However, because there was no placebo

group in this study and significant baseline differences

between the two small groups, it was impossible to

comment on any potential clinical benefits of the

medicine (Espay et al., 2020). Despite the promising

results of preclinical research and the fact that another

trial (NILO-PD) is now underway in the United States,

there is no convincing evidence of nilotinib’s efficacy in

PD patients (Stoker et al., 2018).

5 FDA-approved repurposed drugs
for PD

The central nervous system (CNS) is the most important

and crucial area for drug repositioning due to its complicated

pathophysiology, complex anatomy, and extra barriers that

make it difficult to understand (Messick et al., 1985). So the

exact mechanism of action of already established drugs for

CNS disorders is not clearly understood (Gilroy et al., 2004).

CNS is being researched continuously to understand receptor

profiling and the mode of action of already developed and

marketed drugs to address these problems (Anighoro et al.,

2014). The prevalence rate of neurodegenerative disorders is

much more in the world population (Chandra et al., 2006).

Still, the drug discovery and development of these disorders is

shallow and does not meet the needs of the people (Ekins

et al., 2019). So to cope with this world’s worst dilemma, it is

the need of the hour to discover new therapies (Ashburn and

FIGURE 2
Repurposed drugs tested in clinical trials for Parkinson’s disease.
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Thor, 2004a). Drug repositioning can address this issue by

finding new drug therapies and better combinations of drugs

for increasing efficacy and decreasing side effects (Sun et al.,

2016). This review discusses the historical and current status

of FDA-approved repositioned medicines for PD, focusing on

new approaches to identify potential drugs that can be

repurposed and identifying their mechanism of action. We

know that PD is the second most prevalent

neurodegenerative disorder (Seppi et al., 2019). According

to the previous literature review, more than 6 million people

are affected by PD worldwide (Nadim et al., 2020). There is an

intense demand to find therapies that will prevent and slow

the extension of this progressive and chronic condition,

which significantly affects the patient’s quality of life

(Athauda and Foltynie, 2018). The already established

treatment regimens for PD had some direct side effects, so

new agent development through repositioning is inevitable

due to the ease of work, reduced cost, and evolution time

(Nussbaum, 2002). FDA-approved repositioned drugs for PD

are mentioned in Table 3.

5.1 Ropinirole

Ropinirole hydrochloride is one of the several ergoline D-

2 receptor agonists (Kaye and Nicholls, 2000). SmithKline

Beecham first developed it for hypertension; then, it was

repositioned by GSK and approved by the FDA in 1997 for

early and later PD (Zesiewicz and Hauser, 1999). Dopamine

agonist drugs act by mimicking levodopa in the brain and

improve problems associated with levodopa use (Antonini

and Tolosa, 2009). Levodopa is the principal drug used for PD

treatment (Fiala et al., 2003). Although it is the most potent

therapy, its side effects include dyskinesias (involuntary

muscle movement) and “on–off” symptoms, which are

troublesome in long-term use (Thanvi et al., 2007).

Alternatives that delay or reduce exposure to levodopa

have been explored to improve the patient’s quality of life

and reduce the risk of side effects (Schapira, 2005). To address

levodopa-induced dyskinesia, ropinirole was successively

repositioned for PD (Nyholm, 2003). Nowadays, according

to NICE guidelines, dopamine agonists and monoamine

oxidase B (MAO-B) inhibitors may be used for the

correction of motor deficits in case it does not impact the

quality of life (Stocchi et al., 2015).

5.2 Amantadine

The FDA approved amantadine in October 1966 as a

prophylactic agent against influenza (Douglas, 1982). The

exact mechanism by which it exerts its antiviral activity is

unknown. However, it is believed to prevent the release of

viral nucleic acid into the host cell by inhibiting the M2 viral

protein (Skehel et al., 1978). During the 2009 pandemic

flu season, the Centers for Disease Control and Prevention

(CDC) found flu samples 100% resistant to amantadine (Dapat

et al., 2012). This drug was accidentally discovered to be

reducing symptoms of PD in 1969 (Hubsher et al., 2012).

Amantadine hydrochloride (the antidyskinetic agent) was

repositioned by Adamas Pharmaceuticals and approved by

the FDA for treating dyskinesia in PD patients receiving

levodopa-based therapy (Sharma et al., 2018). In August

2017, the FDA had approved the first and only drug

for treating dyskinesia in PD patients (Chen et al., 2020).

Amantadine treats dyskinesia by blocking the NMDA

receptor, thus decreasing the inactivation of dopamine and

blocking presynaptic dopamine reuptake, and prolonging its

adequate time (Schaeffer et al., 2014). These repurposed

molecules have proven safe in humans and can be a highly

efficient method of rapidly bringing new treatments to patients

(O’Connor and Roth, 2005). Repurposing bypasses many high-

risk phases of the drug development process (Shineman et al.,

2014).

5.3 Rasagiline

In early 1970, Aspro Nicholas first invented and patented

rasagiline for hypertension (Entzeroth and Ratty, 2017). But in

mid-2006, while identifying a potential repurposing candidate

in the case of PD, the MAO inhibitor role of rasagiline was

discovered (Guay, 2006). Rasagiline was identified as an MAO-

B inhibitor effective as monotherapy (Fiedorowicz and Swartz,

2004). MAO-B inhibitors can be prescribed as adjuvant therapy

for motor symptoms, and it is supposed that they have a lower

risk of hallucinations than dopamine agonists (Oertel and

Schulz, 2016). Since the accumulation of SNCA aggregates

leads to an increase in oxidative stress, mitochondrial

dysfunction, and apoptosis, the use of rasagiline in PD is

pathogenetically determined (Dias et al., 2013). It has been

researched to have a powerful neuroprotective function:

regulation of the mitochondrial apoptosis system,

maintenance of the mitochondrial function, and increased

expression of antioxidant enzyme genes (Naoi et al., 2020).

The management of PD is relatively easy at the initial stages of

the disease, where all dopamine-mimetic dopamine and drugs

and amantadine or selegiline (or an antimuscarinic agent if the

tremor is the main problem) can be very productive (Birkmayer

and Riederer, 2012). As the disease progresses and these agents

become insufficient, levodopa can be added (DeMaagd and

Philip, 2015a). They compensate for the primary deficiency in

PD and the decreased dopamine levels in the brain (Wu and

Hallett, 2013).
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6 Repurposed drugs that have been
tested in clinical trials in PD

PD is a complicated disease, and until now, there are no

disease-modifying treatments for PD (Warren Olanow and

Kieburtz, 2010). Supportive therapies exist, like physiotherapy,

medication (dopamine), and surgery, in rare cases, but still, there

is a need for safer and more effective pharmacological treatments

for psychosis in PD (Maiti et al., 2017). Figure 2 illustrates a

complete list of drugs tested in clinical trials.

7 Conclusion

PD is a progressive concern in our society. There are, however,

still numerous obstacles on the way to discovering methods for a

cure. This literature review intended to give an overview of PD

repositioned drugs that are currently in clinical trials and approved

and are in use for PD. The aforementioned tables have

comprehensive descriptions, including MOA and original,

repurposed indications for each drug. We have demonstrated

drugs that have already been repurposed and are suitable for

PD, emphasizing the importance of finding disease-modifying

therapies for PD. New drugs that have, in their

pharmacodynamic effects, directed at the components of the

pathogenesis of PD can be successfully studied as such therapy.
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