УДК: 612.8:613.25

ОСОБЕННОСТИ ВЛИЯНИЯ ВЫСОКОКАЛОРИЙНОГО ПИТАНИЯ НА СТРЕССОУСТОЙЧИВОСТЬ КРЫС

Л.М. Тарасенко, А.Е. Омельченко, М.В. Билец, В.Ю. Цубер

Высшее государственное учебное заведение Украины «Украинская медицинская стоматологическая академия» (г. Полтава)

Стресс-синдром характеризуется активацией стресс-реализующих и стресс-лимитирующих систем [1, 2, 3]. Мобилизация защитных механизмов организма в ответ на действие стрессорных факторов составляет физиологическую основу стрессоустойчивости организма, что лежит в основе выделения типов реагирования на стрессоры [4, 5].

Особенности метаболических изменений при сочетанном действии стрессорных раздражителей и высококалорийного питания (ВКП) мало исследованы и представлены в единичных работах [6, 7]. Между тем эти исследования приобретают важное значение в связи с изменением условий жизни современного человека — возрастанием роли стрессогенных ситуаций и избыточного потребления энергетически ценных продуктов питания [8, 9].

Целью настоящей работы явилось изучение метаболических показателей, характеризующих стрессоустойчивость организма, в условиях сочетанного действия хронического стресса и высококалорийного питания.

Материалы и методы исследований. Эксперименты выполнены на 35 половозрелых крысах-самцах линии Вистар, подвергнутых парциальному влиянию ВКП в течении 8 недель [10], хроническому иммобилизационному стрессу в течение 5 дней по методу Г. Селье [11], а также их сочетанному воздействию. ВКП моделировали по методу Е.W. Кгаедеп [10]. Контролем служили интактные крысы. Забой животных проводили под гексеналовым наркозом (50 мг/кг массы тела). Кровь

отбирали полостей сердца. При проведении экспериментов ИЗ придерживались принципов, изложенных в Европейской конвенции «Про защиту позвоночных животных, которые используются для экспериментов и других научных целей» (Страсбург, 1985) и норм биомедицинской этики, одобренных Первым национальным Конгрессом по биоэтике (Киев, 2011). В цельной крови определяли содержание перекиси водорода [12], в сыворотке крови – концентрацию сиаловых кислот по Hess [13]. В гомогенате ткани поджелудочной железы исследовали амилолитическую активность методом Каравея [13] с помощью стандартного набора реактивов. Выбор данных показателей для оценки стрессоустойчивости организма не случайный – они отличаются высокой чувствительностью к стрессорным воздействиям [4, 5]. Статистический анализ результатов исследований проводили методами вариационной статистики, используя программу SPSS 17.0 для Windows. Для оценки различий между группами исследований применяли тест Краскела-Уоллиса. Критический уровень значимости в исследованиях принимали ≤ 0,05.

исследований Результаты И их обсуждение. Проведенные исследования показали, что раздельное воздействие иммобилизационного стресса и ВКП способствует повышению уровня перекиси водорода в крови на 87% и 55% соответственно по сравнению с контрольной группой крыс (таблица). Степень увеличения концентрации перекиси водорода в крови у стрессированных крыс была большей, чем в группе животных, которые находились на ВКП. Сочетанное влияние ВКП иммобилизационного стресса способствовало дальнейшему увеличению уровня перекиси водорода в крови, что отражает взаимопотенцирующее действие обоих факторов на организм (таблица).

Как известно, перекись водорода образуется из супероксиданионрадикала под действием супероксиддисмутазы и расщепляется нерадикальным путем группой ферментов антиоксидантной защиты – пероксидаз, в частности, наиболее активных – каталазы и глутатионпероксидазы.

Таблица

Биохимические показатели сыворотки крови и поджелудочной железы в условиях парциального и сочетанного влияния высококалорийного питания и иммобилизационного стресса, (М±m)

Показатели	Количество	Перекись	Сиаловые	Амилолитическая
	животных	водорода,	кислоты,	активность
		усл.ед./л	ммоль/л	поджелудочной железы (в
				мг гидролизированного
Группы				крахмала за 1 мин. на 1 г
13				гомогената ткани)
Контроль	9	$0,162\pm0,012$	$2,34\pm0,15$	258,38±6,65
Высококалорийное	9	0,251±0,016*	$2,47\pm0,20$	253,26±4,89
питание				
Иммобилизационный	8	0,303±0,018*	$2,31\pm0,26$	249,77±3,09
стресс				
Высококалорийное	9	0,385±0,021*	3,01±0,11**	236,83±4,55**
питание +				
иммобилизационный				
стресс				

Примечание: * - p<0,001 во всех группах сравнения;

** - достоверные отличия сравнительно с контролем

Перекись водорода легко проникает через клеточные биомембраны и, вступая в реакцию Фентона, образует ОН-радикал, способный разрывать любую С—Н или С—С связь, образуя набор биологически активных соединений, избыток которых обладает повреждающим действием [14].Следовательно, сочетанное влияние ВКП иммобилизационного стресса способствует активации процессов свободнорадикального окисления, что, по-видимому, лежит в основе их взаимоотягчающего действия на организм.

Десиализации сложных белково-углеводных комплексов — гликопротеинов придают существенное значение в механизме стрессорных повреждений тканей [15]. Гликопротеины — это многочисленная группа

сложных белков, являющихся структурными компонентами биомембран, внеклеточного матрикса, соединительной ткани, иммуноглобулинов, гормонов и других соединений. Важно подчеркнуть, что гликопротеины клеточных мембран принимают участие в межклеточных взаимодействиях. Нативная структура углеводной части гликопротеинов является необходимым условием сохранения функций этих биомолекул.

При раздельном влиянии ВКП и иммобилизационного стресса не наблюдалось отличий в содержании сиаловых кислот в сыворотке крови по сравнению с контрольной группой крыс. При сочетанном действии обоих факторов содержание сиаловых кислот в сыворотке крови возросло 30% по отношению контролю. Следовательно, К взаимопотенцирующий эффект действия ВКП и иммобилизационного стресса на катаболизм гликопротеинов, следствием чего является отщепление OT олигосахаридной цепи гликопротеинов концевого мономера – сиаловой кислоты.

Показано, что высококалорийная диета у мышей инициирует развитие гипоксии жировой ткани и способствует возникновению инсулинорезистентности [16]. Возможно, определенную роль в снижении чувствительности клеток к инсулину в условиях сочетанного влияния ВКП и иммобилизационного стресса играет десиализация гликопротеинов биомембран, включая инсулиновые рецепторы, что показано нами ранее [6].

Исследование амилолитической активности гомогената поджелудочной железы показало, что раздельное действие ВКП и иммобилизационного стресса не оказывало существенного влияния на продукцию амилазы в поджелудочной железе (таблица). Однако, при сочетанном их действии наблюдалось достоверное снижение поджелудочной (таблица). амилолитической активности железы Следовательно, отчетливо проявляется взаимопотенцирующее влияние ВКП иммобилизационного И стресса экскрецию на амилазы

поджелудочной железы, что может отражать нарушение ее белковосинтетической функции. Эта закономерность — угнетение синтеза амилазы, прослежена ранее одним из нас в ткани слюнных желез под влиянием острого стресса [5].

Выводы. Проведенные исследования обосновывают положение о том, что высококалорийное питание снижает стрессоустойчивость организма, что может играть существенную роль в условиях изменений образа жизни и характера питания современного человека.

Перспективность исследования. Продолжение исследований будет сосредоточено на изучении влияния высококалорийного питания на стрессоустойчивость поджелудочной железы и риск развития инсулиновой недостаточности.

Список литературы.

- 1. Барабой В.А. Стресс: природа, биологическая роль, механизмы, исходы / Барабой В.А. К.: "Украиника", 2006. 424 с.
- 2. Пшенникова М.Г. Феномен стресса. Эмоциональный стресс и его роль в патологии / М.Г. Пшенникова // Патол. физиол. и эксперим. терапія. -2000. №2. C. 24-31.
- 3. Резніков О.Г. Про- та антиоксидантна системи і патологічні процеси в організмі людини / О.Г. Резніков, О.М. Полумбрик, Я.Г. Бальон // Вісник Національної академії наук України. 2014. № 10. С. 17-29.
- 4. Омельченко О.Є. Біохімічні механізми типу реагування та індивідуальної стресостійкості організму / О.Є. Омельченко // Актуальні проблеми сучасної медицини: Вісник Української медичної стоматологічної академії. 2009. Т.9, вип.2(26). С. 101-105.
- 5. Цубер В.Ю. Аналіз морфологічних та біохімічних змін в слинних залозах щурів під впливом гострого стресу залежно від типу нервової регуляції / В.Ю. Цубер // Світ медицини та біології. 2012. №3. С. 56-61.

- 6. Тарасенко Л.М. Вплив висококалорійної змішаної дієти на виразкове ушкодження шлунка та інкреторну функцію підшлункової залози за умов іммобілізаційного стресу в щурів / Л.М. Тарасенко, О.Є. Омельченко, М.В. Білець [та ін.] // Медична хімія. 2014. Т.16. №3 (60). С.46-49.
- 7. Омельченко О.Є. Стресостійкість органів травлення, зміни ліпідного спектру крові у щурів при висококалорійному харчуванні, іммобілізаційному стресі та їх поєднаному впливі / О.Є. Омельченко // Вісник проблем біології і медицини. 2015. Вип. 2 (118) С. 177-181.
- 8. Колов С.А. Первичный стресс и его последствия у ветеранов боевых действий / С.А. Колов // Российский психиатрический журнал. -2010. -№ 5. -C.54-58.
- 9. Лифтиев Р.Б. Роль пищевого поведения в формировании избыточной массы тела и ожирения взрослого населения г. Баку / Р.Б. Лифтиев, А.А. Агаев // Междунар. мед. журнал. 2011. № 2. С.65-68.
- 10. Kraegen E. Development of muscle insulin resistance after liver insulin resistance in high-fat-fed rats / E. Kraegen, P. Clark, A. Jenkins [et al.] // Diabetes. 1991. Vol. 40. №11. P. 1397-1403.
- 11. Селье Γ . Очерки об адаптационным синдроме / Селье Γ . М.: Медицина, 1960. 254 с.
- 12. Graf E. Method for determination of hydrogen peroxide with its application illustrated by glucose assay / E. Graf, T.P. John // J. Clin. Chem. 1980. Vol. 26, $N goldsymbol{1} 5. P. 658-660$.
- 13. Камышников В.С. Клиническая биохимия / Камышников В.С. Минск: "Беларусь", 2000. Т. 2. 463 с.
- 14. Сазонтова Т.Г. Значение баланса прооксидантов и антиоксидантов равнозначных участников метаболизма / Т.Г. Сазонтова, Ю.В. Архипенко // Пат. физиол. и экспер. терапия. 2007. №3. С. 2-17.
- 15. Меерсон Ф.3. Роль потери сиаловой кислоты миокардом в депрессии сократительной функции сердечной мышцы при стрессе / Ф.3.

Меерсон, А.И. Сауля, В.С. Гудумак // Вопр. мед. химии. – 1985. – № 2. – С. 118-120.

16. Hosogai N. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation / N. Hosogai, A. Fukuhara, K. Oshima [et al.] // Diabetes. – 2007. – Vol. 56. – №4. – P. 901-911.

Особенности влияния высококалорийного питания на стрессоустойчивость крыс

Л.М. Тарасенко, А.Е. Омельченко, М.В. Билец, В.Ю. Цубер

Резюме. В экспериментах на половозрелых крысах исследовали стрессоустойчивость условиях сочетанного организма В действия высококалорийного хронического стресса. Критерием питания И стрессоустойчивости животных служили изменения концентрации в крови перекиси водорода, сиаловых кислот, а также амилолитическая активность поджелудочной железы. Сделан вывод о взаимопотенцирующем эффекте высококалорийного питания И хронического стресса, 0 чем свидетельствует повышения уровня в крови перекиси водорода, сиаловых кислот и торможение синтеза α-амилазы в поджелудочной железе.

Снижение стрессоустойчивости организма отражает негативное влияние избыточного питания на механизмы гомеостаза.

Ключевые слова: стрессоустойчивость, сиаловые кислоты, перекись водорода, α-амилаза, высококалорийное питание

УДК: 612.8:613.25

Особливості впливу висококалорійного харчування на стресостійкість щурів

Л.М. Тарасенко, О.Є. Омельченко, М.В. Білець, В.Ю. Цубер

Резюме. В експериментах на статевозрілих щурах дослідили стресостійкість організму за умов поєднаного впливу висококалорійного харчування та хронічного стресу. Критерієм стресостійкості тварин

слугували зміни рівня в крові перекису водню, сіалових кислот, а також амілолітична активність підшлункової залози. Зроблено висновок о взаємопотенціюючому ефекті висококалорійного харчування та хронічного стресу, про що свідчить збільшення рівня в крові перекису водню, сіалових кислот та гальмуванню синтезу α-амілази в підшлунковій залозі.

Зниження стресостійкості організму відображає негативний вплив надлишкового харчування на механізми гомеостазу.

Ключові слова: стресостійкість, сіалові кислоти, перекис водню, α-амілаза, висококалорійне харчування

UDC: 612.8:613.25

Characteristics of high-calorie diet effect to stress resistance in rats

L.M. Tarasenko, A.E. Omelchenko, M.V. Bilets, V.U. Zuber

Summary. In experiments on adult rats the stress resistance was investigated under combined action of high-calorie diet and chronic stress. Changes of hydrogen peroxide, sialic acids concentration in the blood and the

Concluded about the synergistic effect of high-calorie diet and chronic

amylolytic activity of the pancreas were criterions of animals stress resistance.

stress. Hydrogen peroxide, sialic acids in the blood, inhibition of α -amylase

synthesis in the pancreas are evidenced of this conclusion.

Decreasing of organism stress resistance reflects the negative effect of excessive nutrition at the homeostasis mechanisms.

Key words: stress, sialic acid, hydrogen peroxide, α-amylase, high-calorie diet