Высшее государственное учебное заведение Украины «Украинская медицинская стоматологическая академия» Кафедра микробиологии, вирусологии и иммунологии

ПОСОБИЕ

к практическим занятиям по микробиологии, вирусологии и иммунологии для студентов медицинского факультета часть І

студента(ки) медицинского факультета

II курса _____группы

Пособие для практических занятий по микробиологии, вирусологии и иммунологии составлено авторским коллективом:

- 1. ЛОБАНЬ Галина Андреевна заведующая кафедры, д.м.н., профессор
- 2. ФЕДОРЧЕНКО Вера Ивановна завуч кафедры, к.б.н., доцент
- 3. ЗВЯГОЛЬСКАЯ Ирина Николаевна к.б.н., доцент
- 4. ПОЛЯНСКАЯ Валентина Павловна к.б.н., доцент
- 5. КНЫШ Оксана Васильевна преподаватель

Пособие для практических занятий по микробиологии, вирусологии и иммунологии рекомендовано Центральной методической комиссией Высшего государственного учебного заведения Украины «Украинская медицинская стоматологическая академия» от 17.04.03 (протокол №7) для аудиторной и внеаудиторной работы студентов по микробиологии, вирусологии и иммунологии. Пособие может быть использовано для подготовки к практическим, итоговым занятиям, экзамену по предмету.

Пособие является интеллектуальной собственностью и без письменного разрешения авторов не может быть скопированным и размноженным в полном объеме или частями, кроме рукописной формы. Авторские права защищены Законом Украины "Об авторском праве и смежных правах".

СОТРУДНИКИ КАФЕДРЫ

- 1. ЛОБАНЬ Галина Андреевна заведующая кафедры, д.м.н., профессор
- 2. ФЕДОРЧЕНКО Вера Ивановна завуч кафедры, к.б.н., доцент
- 3. ЗВЯГОЛЬСКАЯ Ирина Николаевна к.б.н., доцент
- 4. ПОЛЯНСКАЯ Валентина Павловна к.б.н., доцент
- 5. ГАНЧО Ольга Валерьевна к.б.н. преподаватель
- 6. КОСТИЧ Ольга Алексеевна к.б.н. преподаватель
- 7. КОВАЛЕНКО Нинель Павловна к.б.н., преподаватель
- 8. КНЫШ Оксана Васиильевна преподаватель
- 9. КАНДЗЮБА Светлана Ивановна старший лаборант
- 10.ВАНЖА Любовь Григорьевна лаборант
- 11. БРЕЧКА Галина Валентиновна препаратор
- 12.КИРИЙ Ирина Николаевна препаратор

Литература для самостоятельной работы:

- 1. Пяткин К.Д., Кривошеин Ю.С. Мікробіологія з вірусологієй та імунологієй: Підручник /Пер.з рос.- К.: Вища школа, 1992. 431 с.
- 2. Коротяев А.Н., Бабичев С.П. Медицинская микробиология, иммунология и вирусология.- Санкт-Петербург: Специальная литература, 2000.-545 с.
- 3. Руководство к практическим занятиям по медицинской микробиологии и лабораторной диагностике инфекционнных болезней / Под ред. проф Кривошеина Ю. С.- К.: Вища школа, 1986.- 376 с.
- 4. Руководство к лабораторным занятиям по микробиологии /Под ред. Борисова Л.Б.- М.: Медицина, 1984 255 с.
- 5. Медицинская микробиология / Гл. ред.В.И. Покровский, О.К. Поздеев М.: Геотар Мед., 1998. 1183 с.
- 6. Тимаков В.Д., Левашов В.С., Борисов Л.Б. Микробиология. М.: Медицина, 1983. 497 с.
- 7. Пяткин К.Д., Кривошеин Ю.С. Микробиология.-Г.: Медицина, 1981-512 с.
- 8. Лобань Г. А., Федорченко В. И., Мікробіологія, вірусологія та імунологія порожнини рота.- Полтава: Верстка, 2004.-123с.

В дальнейшем учебная литература к каждому занятию приводится под указанными номерами.

Дата _		
--------	--	--

Тема: Принципы организации, аппаратура и режим работы микробиологической лаборатории. Методы микроскопического исследования. Бактериоскопический метод диагностики инфекционных заболеваний.

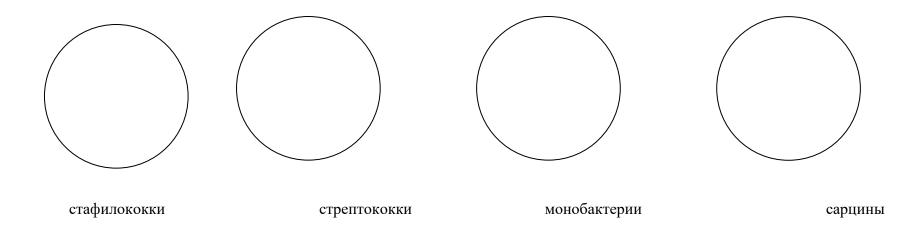
Задания для самостоятельной работы:

- а) Перечень вопросов, подлежащих изучению:
- 1. Предмет и задачи медицинской микробиологии. Значение микробиологии в деятельности врача.
- 2. Назначение, оборудование и организация работы микробиологической лаборатории.
- 3. Правила работы и техники безопасности в микробиологической лаборатории.
- 4. Микроскопические методы исследования микроорганизмов: иммерсионная, фазовоконтрастная, темнопольная, люминесцентная, электронная микроскопия.
- 5. Строение светового микроскопа.
- 6. Правила микроскопии в световом микроскопе с иммерсионным объективом.
 - б) Перечень практических навыков и умений, которыми необходимо овладеть:
- 1. Соблюдение правил противоэпидемического режима и техники безопасности в микробиологической лаборатории.
- 2. Микроскопия препаратов в световом микроскопе с иммерсионным объективом.

Литература:

1) c. 10-19; 2) c. 5-18; 3) c. 5-9; 4) c. 5-19; 5) c. 1-5; 113-120; 6) c. 7-21; 7) c. 4-18.

Правила работы с иммерсионным микроскопом


- І. 1. Работать с искусственным источником света.
 - 2. Использовать плоское зеркало.
 - 3. Диафрагму полностью открыть.
 - 4. Конденсор поднять в верхнее положение.
 - 5. На малом увеличении установить максимальное освещение.
- II. 1. Визуально оценить препарат.
 - 2. Нанести на препарат 1-2 капли иммерсионного масла.
 - 3. Положить препарат на предметный столик.
- III. 1. Револьвером установить в рабочее положение иммерсионый объектив.
 - 2. Макровинтом опустить объектив до соприкосновения с покровным стеклом.
 - 3. Искать изображение препарата, медленно поднимая объектив макровинтом.
 - 4. Тонкую регуляцию изображения выполнить с помощью микровинта.
- IV. 1. После окончания работы поднять объектив макровинтом.
 - 2. Поставить микроскоп на малое увеличение.

Практические задания, которые подлежат выполнению:

Задание № 1: Выучить правила работы и техники безопасности в микробиологической лаборатории.

Завдання № 2: Изучить строение светового микроскопа и освоить технику работы с иммерсионным объективом.

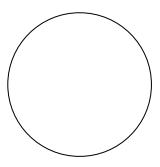
Задание № 3: Микроскопировать и зарисовать препараты: 1) стафилококки, 2) стрептококки, 3) монобактерии, 4) сарцины.

Подпись преподавателя

Дата	

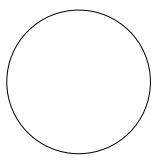
Тема: Морфология бактерий. Техника приготовления препаратов из культур бактерий и патологического материала. Простые методы окраски.

Задания для самостоятельной работы:


- а) Перечень вопросов, которые подлежат изучению:
- 1. Классификация микроорганизмов по форме, количеству и взаимному расположению клеток.
- 2. Этапы приготовления препаратов для микроскопического исследования культур бактерий.
- 3. Этапы приготовления препаратов для микроскопического исследования патологического материала.
- 4. Простые методы окраски, их методика.
 - б) Перечень практических навыков и умений, которыми необходимо овладеть:
- 1. Приготовление препаратов для микроскопического исследования.
- 2. Окраска препаратов простыми методами: водными растворами фуксина и метиленового синего.
- 3. Микроскопия препаратов в световом микроскопе с иммерсионным объективом.

Литература:

1) c. 23-27; 2) c. 31-32; 3) c. 9-15; 4) c. 20-24; 5) c. 17; 113-114; 6) c. 27-28; 7) c. 23-26.


Практические задания, которые подлежат выполнению:

Задание № 1: Приготовить препарат для микроскопического исследования культуры бактерий с плотной питательной среды. Окрасить водным раствором фуксина. Микроскопировать, зарисовать.

(назовите микроорганизмы с учетом их формы и взаимного расположения клеток)

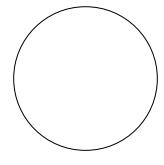
Задание № 2: Приготовить препарат для микроскопического исследования культуры бактерий из жидкой питательной среды. Окрасить водным раствором метиленового синего. Микроскопировать, зарисовать.

(назовите микроорганизмы с учетом их формы и взаимного расположения клеток)

Задание № 3: Микроскопировать и зарисовать препараты, которые окрашены простым методом: 1) диплококки, 2) вибрионы.

Дата			

Тема: Структура бактериальной клетки. Сложные методы окраски. Метод Грама. *Задания для самостоятельной работы:*

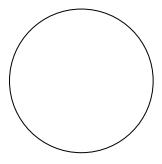

- а) Перечень вопросов, которые подлежат изучению:
 - 1. Структура бактериальной клетки. Клеточная стенка, периплазма, цитоплазматическая мембрана, цитоплазма, нуклеоид, рибосомы, мезосомы, плазмиды.
 - 2. Химический состав и функции структурных компонентов бактериальной клетки.
 - 3. Полиморфизм бактерий. Свойства L-форм бактерий.
 - 4. Сложные методы окраски. Метод Грама.
 - 5. Механизмы взаимодействия красителей со структурами бактериальной клетки.
 - 6. Факторы, которые влияют на окраску бактерий по Граму.
- б) Перечень практических навыков и умений, которыми необходимо овладеть:
 - 1. Приготовление препаратов для микроскопического исследования патологического материала.
 - 2. Окраска препаратов сложным методом: окраска по Граму.
 - 3. Микроскопия препаратов в световом микроскопе с иммерсионным объективом.
 - 4. Дифференциация микроорганизмов по морфологическим и тинкториальным признакам.

Литература:

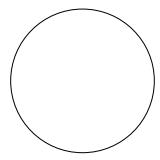
1) c. 27-31; 2) c. 33-40, 28-29; 3) c. 15-17; 4) c. 25-26; 5) c. 19-25; 39-43; 6) c. 28-38; 7) c. 26-32.

Практические задания, которые подлежат выполнению:

Задание № 1: Приготовить мазок из микробной ассоциации бактерий, окрасить по методу Грама. Микроскопировать, зарисовать.



Этапы окраски по Граму (модификация Синева):


- 1. Раствор генцианвиолета 2 мин. (фильтровальная бумажка, пропитанная красителем и высушенная).
- 2. Раствор Люголя 1 мин.
- 3. Этиловый спирт-ректификат 30 сек.
- 4. Промыть водой.
- 5. Фуксин Пфейффера 2 мин.
- 6. Промыть водой, высушить.
- 7. Микроскопировать.

(назовите выявленные микроорганизмы с учетом формы, взаимного расположения клеток и тинкториальних свойств)

Задание № 2: Микроскопировать и зарисовать препараты, которые окрашены по Граму: 1) стрептобациллы, 2) диплококки.

стрептобациллы граммположительные

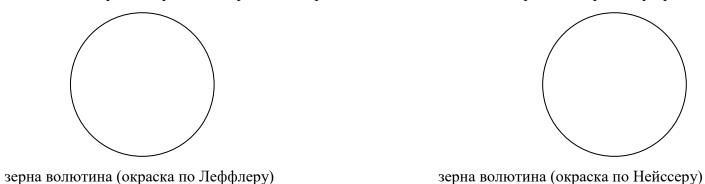
диплококки грамотрицательные

Подпись преподавателя

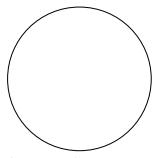
Дата			

Тема: Структура бактериальной клетки: включения, капсула, жгутики. Методы их выявления

Задания для самостоятельной работы:


- а) Перечень вопросов, которые подлежат изучению:
 - 1. Включения: химический состав, функции, практическое значение. Методы выявления включений.
 - 2. Капсулы бактерий: строение, химический состав, функциональное значение. Методы выявления. Окраска по методу Гинса-Бурри.
 - 3. Жгутики, реснички: строение, расположение на поверхности бактериальной клетки, функциональное значение. Методы выявления жгутиков. Окраска по методу Леффлера.
 - 4. Выявление подвижности бактерий. Приготовление препаратов "висячая" капля и "раздавленная" капля.
- б) Перечень практических навыков и умений, которыми необходимо овладеть:
 - 1. Приготовление препаратов "раздавленная" капля и "висячая "капля для микроскопического исследования.
 - 2. Микроскопия препаратов в световом микроскопе с иммерсионным объективом.
 - 3. Дифференциация микроорганизмов по морфологическим и тинкториальным признакам.

Литература:


1) c. 28-29; 31-34; 2) c. 40-43; 3) c. 20-23; 23-25; 4) c. 23-24; 26-27; 36; 5) c. 17-19; 26; 114-115; 6) c. 29-31, 38; 7) c. 29; 32-36.

Практические задания, которые подлежат выполнению:

Задание №1: Микроскопировать и зарисовать зерна волютина в цитоплазме коринебактерий дифтерии.

Задание № 2: Микроскопировать и зарисовать препарат капсульных бактерий.

капсулы бактерий (окраска по Гинсу-Бурри)

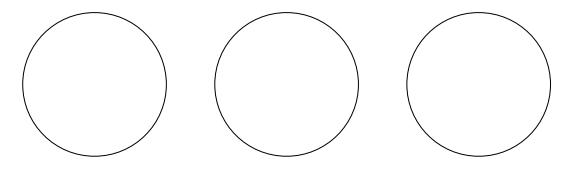
Задание № 3: Приготовить препарат "висячая" капля из односуточной культуры холероподобного вибриона. Микроскопировать, выявить подвижность бактерий.

Подпись преподавателя_____

Дата			

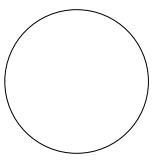
Тема: Структура бактериальной клетки. Методы выявления спор и кислотоустойчивых бактерий.

Задания для самостоятельной работы:


- а) Перечень вопросов, которые подлежат изучению:
 - 1. Строение, химический состав, динамика образования спор, функциональное значение. Патогенные спорообразующие бактерии.
 - 2. Факторы, которые обеспечивают высокую устойчивость микроорганизмов к действию факторов внешней среды.
 - 3. Окраска спор по методу Ожешко и Пешкова.
 - 4. Кислотоустойчивые бактерии, особенности их химического состава. Патогенные представители.
 - 5. Метод окраски по Цилю-Нильсену.
- б) Перечень практических навыков и умений, которыми необходимо овладеть:
 - 1. Приготовление препаратов для микроскопического исследования патологического материала (мокрота).
 - 2. Окраска препаратов сложными методами (по Цилю-Нильсену).
 - 3. Микроскопия препаратов в световом микроскопе с иммерсионным объективом.
 - 4. Дифференциация микроорганизмов по морфологическим и тинкториальным признакам.

Литература:

1) c. 34-35; 38; 274; 2) c. 43-45; 438; 3) c. 17-18; 23; 4) c. 26; 5) c. 37-38; 502; 115; 6) c. 38-40; 347-348; 7) c. 36-38; 343-344.


Практические задания, которые подлежат выполнению:

Задание № 1: Микроскопировать и зарисовать препараты спорообразующих микроорганизмов, которые окрашены по методу Ожешко, Пешкова, Грама.

(охарактеризуйте микроорганизмы по морфологическим признакам, укажите метод окраски)

Задание № 2: Приготовить препарат из мокроты больного, окрасить по Цилю-Нильсену. Микроскопировать, зарисовать.

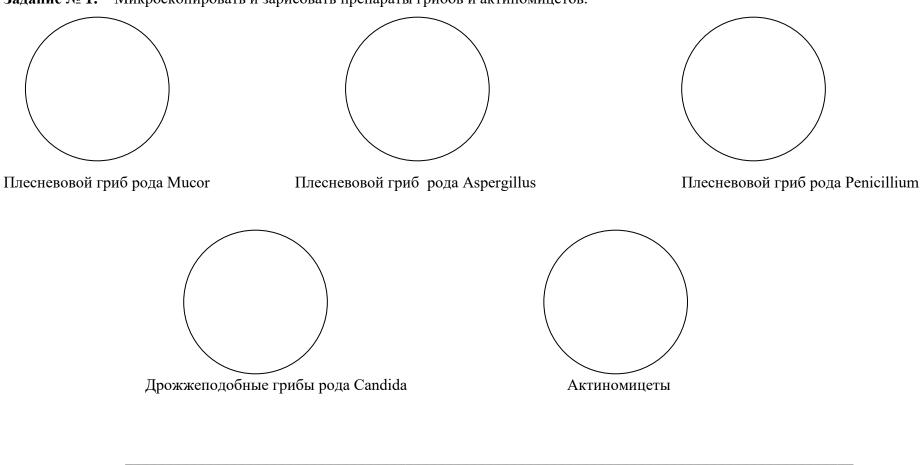
кислотоустойчивые бактерии

Подпись преподавателя_____

Дата

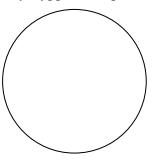
Тема: Морфология и структура спирохет, актиномицетов, грибов и простейших. Методы изучения их морфологии.

Задания для самостоятельной работы:

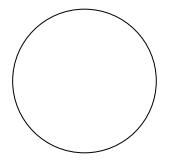

- а) Перечень вопросов, которые подлежат изучению:
 - 1. Классификация, морфология и структура спирохет. Методы изучения их морфологии. Патогенные представители.
 - 2. Классификация, морфология и структура грибов. Методы изучения их морфологии. Патогенные представители.
 - 3. Актиномицеты, морфология и структура. Методы изучения их морфологии. Патогенные представители.
 - 4. Классификация, морфология и структура простейших. Методы изучения их морфологии. Патогенные представители.
- б) Перечень практических навыков и умений, которыми необходимо овладеть:
 - 1. Приготовление препаратов для микроскопического исследования патологического материала.
 - 2. Окраска препаратов сложными методами (по Граму).
 - 3. Микроскопия препаратов в световом микроскопе с иммерсионным объективом.
 - 4. Дифференциация микроорганизмов по морфологическим и тинкториальным признакам.

Литература:

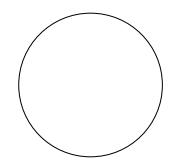
1) c.283-286; 294; 391-392; 405-406; 413; 415; 419; 424; 2) c.477-480; 481-483; 485-486; 488-489; 491-494; 511-512; 3) c. 15-16; 18-19; 171-172; 177-178; 180-181; 252-254; 272-280; 4) c. 28-30; 249; 252-254; 5) c. 475-476; 485-486; 492; 851-855; 903-906; 6) c. 40-41; 440-445; 463; 354-358; 7) c.354-359; 446-447;464; 476; 486.


Практические задания, которые подлежат выполнению:

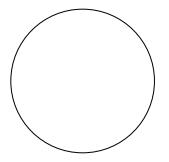
Задание № 1: Микроскопировать и зарисовать препараты грибов и актиномицетов.

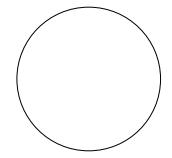

(охарактеризуйте микроорганизмы по морфологическим и тинкториальным свойствам)

Задание № 2: Приготовить препарат из зубного налета по методу Бурри. Микроскопировать и зарисовать.



спирохеты в зубном налете


Задание № 3: Микроскопировать и зарисовать препараты простейших: 1) трипаносомы, 2) трихомонады, 3) лейшмании, 4) малярийный плазмодий.


трипаносомы (окраска по Романовскому-Гимзе)

трихомонады (окраска метиленовым синим)

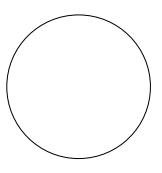
лейшмании (окраска по Романовскому-Гимзе)

малярийный плазмодий (окраска по Романовскому-Гимзе)

Подпись преподавателя____

Тема: Морфология и структура риккетсий, хламидий, микоплазм. Методы их выявления.

Задания для самостоятельной работы:


- а) Перечень вопросов, которые подлежат изучению:
 - 1. Классификация, морфология и структура риккетсий.
 - 2. Методы их выявления.
 - 3. Хламидии . Морфология и структура.
 - 4. Методы выявления хламидий
 - 5. Микоплазмы. Морфология и структура.
 - 6. Методы выявления микоплазм..
- б) Перечень практических навыков и умений, которыми необходимо овладеть:
 - 1. Микроскопия препаратов в световом микроскопе с иммерсионным объективом.
 - 2. Дифференциация микроорганизмов по морфологическим и тинкториальным признакам.

Литература:

1) c. 316-317; 326-332; 2) c. 448; 470-473; 3) c. 299, 306, 312; 4) c. 187-188; 5) c. 24-25, 212-214, 194; 6) c. 43 - 45; 72 - 79; 381-388; 7) c. 43 - 47.

Практические задания, которые подлежат выполнению:

Задание № 1: Микроскопировать и зарисовать риккетсии в препарате, окрашенном по Здродовскому.

(охарактеризуйте микроорганизмы по морфологическим признакам)

Задание № 2: Микроскопировать и зарисовать включения хламидий в инфицированных клетках (окраска по Романовскому-Гимзе).

Подпись преподавателя

Тема: Культивирование бактерий, питательные среды. Методы стерилизации, дезинфекции. Методы выделения чистых культур аэробных бактерий (1-й этап исследования). Бактериологический (культуральный) метод диагностики инфекционных заболеваний.

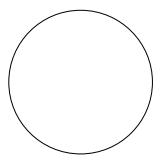
Задания для самостоятельной работы:

- а) Перечень вопросов, которые подлежат изучению:
 - 1. Правила работы с бактериальными культурами и техника безопасности в бактериологической лаборатории.
 - 2. Питание микроорганизмов, классификация по типам питания. Механизмы переноса питательных веществ в бактериальную клетку.
 - 3. Культивирование бактерий. Питательные среды, классификация по назначению, консистенции, происхождению и количеству составляющих частей.
 - 4. Стерилизация. Методы стерилизации, оценка стерилизации.
 - 5. Асептика, антисептика, дезинфекция.
 - 6. Бактериологический (культуральный) метод диагностики инфекционных заболеваний.
 - 7. Смешанные и чистые культуры бактерий. Выделение чистых культур аэробных бактерий (1-й этап).
- б) Перечень практических навыков и умений, которыми необходимо овладеть:
 - 1. Соблюдение правил противоэпидемического режима и техники безопасности в бактериологической лаборатории.
 - 2. Обеззараживание инфицированного материала, антисептическая обработка рук контаминированных исследуемым материалом или культурой микробов.
 - 3. Приготовление препаратов для микроскопического исследования патологического материала.
 - 4. Окраска препаратов сложным методом (по Граму).
 - 5. Микроскопия препаратов в световом микроскопе с иммерсионным объективом.
 - 6. Дифференциация микроорганизмов по морфологическим и тинкториальным свойствам.
 - 7. Посев исследуемого материала тампоном, пипеткой и петлей на жидкие и плотные питательные среды.
 - 8. Окраска препаратов сложными методами.
 - 9. Умение подготовить к стерилизации посуду, питательные среды.

Литература:

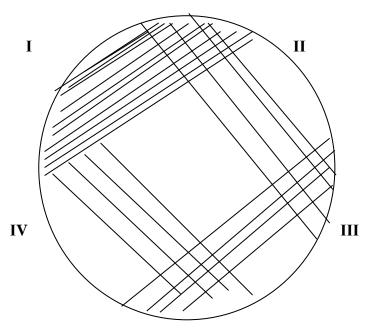
1) c. 46-48; 50-55; 64-68; 95-96; 2) c. 46-55; 78-80; 3) c. 25-26; 4) c. 36-52; 5) c. 23; 26-28; 34; 113; 120-122; 137-145; 6) c. 48-53; 69-71; 141-144; 7)c. 47-51; 54-58; 70-75.

Практические задания, подлежащие выполнению:


Задание № 1: Ознакомиться с аппаратурой, которая используется для стерилизации. Результаты внести в таблицу.

Вид стерилизации	Аппаратура	Режим стерилизации	Объекты, которые подлежат стерилизации	Результаты
Прокаливание	Пламя	_		
Кипячение	Стерилизатор			
Сухим жаром	Печь Пастера			
Паром под давлением	Автоклав			
Пастеризация	Водяная баня			
Тиндализация	Водяная баня			
Текучим паром	Аппарат Коха, автоклав			
Фильтрование	Фильтр Зейтца			
Ультрафиолетовыми лучами	Бактерицидная лампа			
Гамма-излучение	В производственных условиях			

Задание № **2:** Ознакомиться с видами питательных сред, которые применяют для культивирования бактерий. Результаты внести в таблицу, указать их вид и назначение.


Вид питательной среды	Назначение	Примеры питательных сред
		МПБ, МПА
		Сахарный МПБ, сывороточный МПБ, кровяной
		МПА, асцитический МПА, среда Китта-
		Тароцци
		Среды Гисса, МПЖ, Эндо, Левина, Ресселя,
		Олькеницкого
		Желчный МПБ, щелочная пептонная вода,
		щелочной МПА, среды Аронсона, Плоскирева,
		кровяно-теллуритовый агар
		Глицериновая смесь

Задание № 3: Приготовить препарат из патологического материала, окрасить по методу Грама. Микроскопировать, зарисовать.

(охарактеризуйте микроорганизмы с учетом морфологических и тинкториальных свойств)

Задание № **4:** Посеять патологический материал на чашку Петри с мясо-пептонным агаром (МПА) секторным методом (метод Голда) с целью получения изолированных колоний.

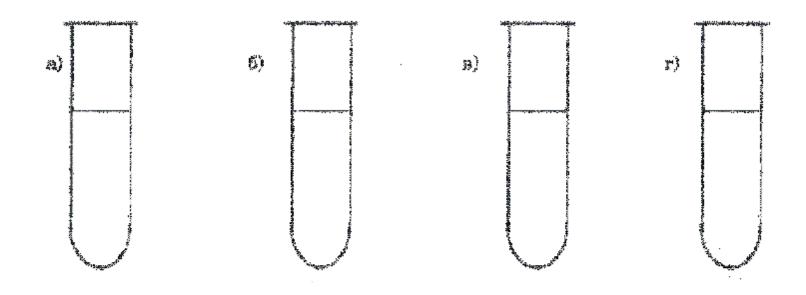
Подпись преподавателя_____

Дата			

Тема: Выделение чистых культур аэробных бактерий (2-й этап исследования). Культуральные свойства бактерий.

Задания для самостоятельной работы:

- а) Перечень вопросов, которые подлежат изучению:
 - 1. Рост и размножение микроорганизмов. Вегетативные формы и формы покоя микробов.
 - 2. Фазы размножения микробов в жидкой питательной среде в стационарных условиях.
 - 3. Колонии, особенности их формирования у разных видов бактерий. Пигментообразование.
 - 4. Выделение чистых культур аэробных бактерий (2-й этап исследования).
- б) Перечень практических навыков и умений, которыми необходимо овладеть:
 - 1. Соблюдение правил противоэпидемического режима и техники безопасности в бактериологической лаборатории.
 - 2. Посев патологического материала петлей на плотные питательные среды.
 - 3. Обеззараживание инфицированного материала, антисептическая обработка рук, контаминированных исследуемым материалом или культурой микробов.
 - 4. Приготовление препаратов для микроскопического исследования.
 - 5. Окраска препаратов сложным методом (по Граму).
 - 6. Микроскопия препаратов в световом микроскопе с иммерсионным объективом.
 - 7. Дифференциация микроорганизмов по морфологическим и тинкториальным признакам.


Литература:

1) c.61-64; 59; 60; 67; 2) c.76-78; 80-83; 3) c.26-27; 4) c.50-54; 5) c.34-37; 61; 122-123; 6) c.63-69; 7) c. 64; 66-70; 73-74.

Практические задания, подлежащие выполнению:

Задание № 1: Ознакомиться с культуральными свойствами разных видов микроорганизмов:

- а) холерный вибрион в щелочной пептонной воде; б) стрептококк в сахарном мясо-пептонном бульоне (сахарный МПБ);
- в) лептоспиры в среде Уленгута; г) стафилококк в мясо-пептонном бульоне (МПБ). Зарисовать и указать характер роста.

Задание № 2: Опишите культуральные свойства бактерий, учитывая характер роста изолированных колоний на плотной питательной среде (заполните таблицу).

Культуральные свойства	Колония №1	Колония №2				
Исследование в проходящем свете						
Размер (диаметр)						
Форма очертаний						
Степень прозрачности						
	Исследование в отраженном свете					
Цвет колонии						
Характер поверхности						
Положение на питательной среде						
	Микроскопическое исследование					
Характер края						
Структура						
	Другие культуральные свойства					
Консистенция						

Задание № **3:** Приготовить препараты из изолированных колоний № 1 и № 2, окрасить по Граму. Микроскопировать, зарисовать.

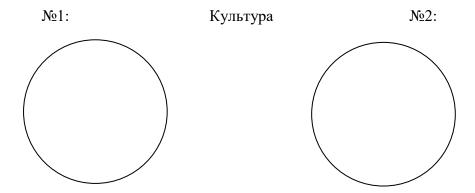
Задание № 4: Пересеять изолированные колонии № 1 и № 2 на скошенный МПА с целью накопления чистых культур бактерий.

Подпись преподавателя_____

Дата			

Тема: Выделение чистых культур аэробных бактерий (3-й и 4-й этапы исследования). Методы изучения ферментативной активности бактерий.

Задания для самостоятельной работы:


- а) Перечень вопросов, которые подлежат изучению:
 - 1. Ферменты бактерий и их классификация.
 - 2. Методы изучения ферментативной активности бактерий и использование их для идентификации бактерий.
 - 3. Дифференциально-диагностические питательные среды, их состав и назначение.
 - 4. Способы идентификации выделенных культур. Понятие о сероварах, морфоварах, биоварах, фаговарах.
 - 5. Современные методы идентификации бактерий с помощью автоматизированных ферментных систем идентификации.
 - 6. Выделение чистых культур аэробов (3-й и 4-й этапы).
- б) Перечень практических навыков и умений, которыми необходимо овладеть:
 - 1. Соблюдение правил противоэпидемического режима и техники безопасности в бактериологической лаборатории.
 - 2. Обеззараживание инфицированного материала, антисептическая обработка рук, контаминированных исследуемым материалом или культурой микробов.
 - 3. Приготовление препаратов для микроскопического исследования.
 - 4. Окраска препаратов сложным методом (по Граму).
 - 5. Микроскопия препаратов в световом микроскопе с иммерсионным объективом
 - 6. Посев исследуемого материала петлей и пипеткой на жидкие и плотные питательные среды.
 - 7. Выделение чистых культур аэробных микроорганизмов.

Литература:

1) c. 49-50; 55-56; 66; 2) c.54-55; 3) c. 27-29; 4) c. 46-47; 52; 54-56; 5) c. 28-34; 121-123; 125; 6) c.53-56; 69-71; 7) c. 51-59; 72; 113-114.

Практические задания, подлежащие выполнению:

Задание № 1: Приготовить препараты из чистых культур бактерий, окрасить по Граму. Микроскопировать, зарисовать.

(охарактеризуйте микроорганизмы с учетом морфологических и тинкториальных свойств, оценка чистоты культуры)

Задание № **2:** Пересеять чистые культуры в мясо-пептонный бульон, мясо-пептонный желатин, молоко и среды короткого пестрого ряда для изучения ферментативной активности бактерий.

Задание № 3: Посеять исследуемый материал в среду Китта-Тароцци.

Задание №4: Изучить схему этапов выделения чистой культуры аэробных бактерий, указать цель каждого этапа. II етап III етап IV етап I етап Материал для Учет изученных свойств: исследовния → 1) Морфологические 2) Тинкториальные Микроскопичес кое изучения 3) Культуральные Оценка чистоты ▶ 4) Биохимические 1) макро- и ультуры: ▶ микроскопическое изучение а) макроскопическое (ферментативные) культуральных свойств б) микроскопическое **→**5) Биологические (токсигенность → Окраска вирулентность и др.) Окраска (по Граму или другим (по Граму) 24ч → Окраска (по Граму) **→** 6) Антигенные методом) 2) Посев на диференциально-7) Чувствительность к 37°C 249 → диагностические среды антибиотикам 3) Заражение лабораторных животных, изученения 8) Фаголизабельные → токсинообразования 4) Постановка серологических реакций с Питательная диагностическими среда → сыворотками 5) Постановка → антибиотикограммы 6) Изучение чувствительности к фагам Цель: Цель: Цель: Цель:

Подпись преподавателя

Дата			

Тема: Методы выделения чистых культур анаэробных бактерий (1-5 этапы исследования).

Задания для самостоятельной работы:

- а) Перечень вопросов, которые подлежат изучению:
 - 1. Дыхание микроорганизмов. Типы дыхания.
 - 2. Способы создания анаэробных условий для культивирования бактерий.
 - 3. Питательные среды для культивирования анаэробов.
 - 4. Выделение чистых культур анаэробных бактерий (1-5 этапы исследования).
- б) Перечень практических навыков и умений, которыми необходимо овладеть:
 - 1. Соблюдение правил противоэпидемического режима и техники безопасности в бактериологической лаборатории.
 - 2. Обеззараживание инфицированного материала, антисептическая обработка рук, контаминированных исследуемым материалом или культурой микробов.
 - 3. Приготовление препаратов для микроскопического исследования.
 - 4. Окраска препаратов сложным методом (по Граму).
 - 5. Микроскопия препаратов в световом микроскопе с иммерсионным объективом.
 - 6. Дифференциация микроорганизмов по морфологическим и тинкториальным признакам.
 - 7. Посев исследуемого материала петлей и пипеткой на жидкие и плотные питательные среды.
 - 8. Выделение чистых культур аэробных и анаэробных бактерий, осуществление идентификации по морфологическим, тинкториальным, культуральным, ферментативным свойствам.

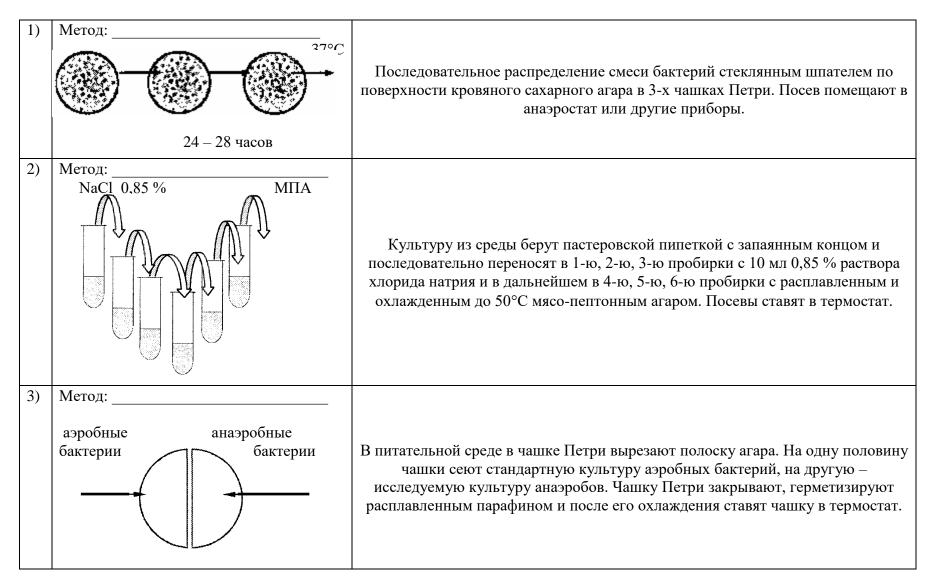
Литература:

1) c. 56-59; 2) c.66-72; 3) c.29-31; 4) c.52-56; 5) c. 28; 120-123; 28-30; 6) c. 56-62; 7) c. 59-64; 70-75.

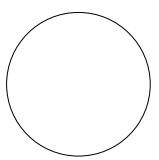
Практические задания, подлежащие выполнению:

Задание № 1: Провести учет ферментативных свойств выделенных чистых культур аэробных бактерий.

Культура бактерий	Лактоза	Глюкоза	Сахароза	Мальтоза	Маннит	МПЖ	Молоко	Индол	H_2S
№ 1									
№ 2									


Заполните таблицу. Укажите характер расщепления углеводов (до кислоты – "К" или до кислоты и газа - "КГ").

Задание № 2: Идентифицировать выделенные чистые культуры бактерий до родовой принадлежности на основании изученных свойств.


Свойства	Культура № 1	Культура № 2
Морфологические		
Тинкториальные		
Культуральные		
Ферментативные		
Вывод	Род	Род

Задание № 3: Ознакомиться с аппаратурой, которая используется для культивирования анаэробных бактерий.

Задание № 4: Изучить способы получения изолированных колоний анаэробных бактерий по методам Цейслера, Вейнберга, Фортнера. Отметить название метода.

Задание № 5: Приготовить препарат из культуры бактерий, выросшей в среде Китта-Тароцци, окрасить по Граму. Микроскопировать, зарисовать.

(охарактеризуйте микроорганизмы с учетом морфологических и тинкториальных свойств)

Задание № 6: Изучить схему выделения чистой культуры анаэробных бактерий. Указать цель каждого этапа.

I	II	III	IV	V
Материал для исследования 1) Микроскопиче ское изучение Окраска по (за Граму) Питательная среда (Середа Китта-Тароцци) 37°С / 24ч Цель:	макроскопическ ое изучення 2) Окраска по Граму и другими методами 37°С 24ч Цель:	1) макро- и микроскопическое изучение культуральних свойств 2) Окраска по Граму или другим методом 37°C 24ч 3) Среда Китта-Тароцци Цель:	1) Оценка чистоты культуры: а) макроскопически б) микроскопически 2) Посев на диференциально-диагностические среды 3) Заражения лабораторних животных, изучения токсинообразования 4) Постановка серологических реакций с диагностическими сыроватками 5) Постановка антибиотикограммы 6) Изучение чувствительности к фагам	Учет изученных свойств: 1) Морфологические 2) Тинкториальные 3) Культуральные 4) Биохимические (ферментативны е) 5) Биологические (токсигенность вирулентность, др.) 6) Антигенные 7) Фаголизабельные 8) Чувствительно сть к антибиотикам

Дата			

Тема: Микробиологические основы антимикробной химиотерапии. Антибиотики.

Задания для самостоятельной работы:

- а) Перечень вопросов, которые подлежат изучению:
 - 1. Понятие о химиотерапевтических препаратах. Химиотерапевтический индекс.
 - 2. Явление антагонизма у микробов. Антибиотики, определение, понятие.
 - 3. Классификация антибиотиков по происхождению, спектру действия, по характеру антимикробного действия, по механизму действия.
 - 4. Единицы измерения антимикробной активности антибиотиков.
 - 5. Методы определения чувствительности бактерий к антибиотикам: метод стандартных дисков и метод серийных разведений.
 - 6. Осложнения антибиотикотерапии. Дисбактериозы и их профилактика.
 - 7. Наследственная и приобретенная устойчивость микроорганизмов к антибиотикам. Генетические и биохимические механизмы антибиотикорезистентности. Роль плазмид и транспозонов в формировании лекарственной устойчивости у бактерий.
 - 8. Пути предупреждения формирования резистентности у бактерий к антибиотикам. Принципы рациональной антибиотикотерапии.
- б) Перечень практических навыков и умений, которыми необходимо овладеть:
 - 1. Определять чувствительность микроорганизмов к антибиотикам.

Литература:

1) c. 187 - 195; 2) c. 135 - 147; 3) c. 33 - 34; 4) c. 75 - 78; 5) c. 145 - 164; 6) c. 230 - 252; 7) c. 217 - 226.

Протокол практического занятия

Практические задания, подлежащие выполнению:

Задание № 1: Провести учет чувствительности чистой культуры стрептококка к антибиотикам, которую определили методом стандартных дисков. Отметить на рисунке зоны задержки роста. Результаты занести в таблицу (учет антибиотикограммы).

		No	Антибиотик	Диаметр зоны задержки роста (мм)	Чувствительность
	\bigcirc	1.			
		2. 3.			
		4.			
		5.			
		6.			
івод:					

Задание № 2: Определить минимальную угнетающую концентрацию цефазолина для культуры стафилококка. Сделать вывод.

№ пробирок Ингредиенты	1	2	3	4	5	6	7	8	9 контроль культуры	10 контроль антибиоти -ка	
МПБ	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	0,5	
Раствор антибиотика 16 мкг/мл	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	-	0,5	
Бульонная культура бактерий	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	_	1 мл
Концентрация антибиотика мкг/мл	8	4	2	1	0,5	0,25	0,125	0,0625	_	8	
Учет											

Вывод:			

[&]quot;+"- наличие роста "-"- отсутствие роста

Задание № **3:** Определить минимальную бактерицидную концентрацию цефазолина для культуры стафилококка. Отметить на рисунке наличие роста бактерий (пересев в секторы осуществлен из пробирок 1, 2, 3, 4 – см. задание №2). Сделать вывод.

Вывод:	 		

Подпись преподавателя_____

Дата_____

Тема: Учение об инфекционном процессе. Биологический метод исследования.

Задания для самостоятельной работы:

- а) Перечень вопросов, которые подлежат изучению:
 - 1. Определение понятия "инфекция", "инфекционный процесс", "инфекционная болезнь".
 - 2. Условия возникновения инфекционного процесса.
 - 3. Роль микроорганизмов в инфекционном процессе. Патогенность, вирулентность. Единицы вирулентности.
 - 4. Факторы патогенности микроорганизмов: адгезии, инвазии, ферменты патогенности, структуры и вещества бактерий, которые угнетают фагоцитоз, эндотоксины, белковые токсины (экзотоксины).
 - 5. Патогенные свойства риккетсий, хламидий, микоплазм, грибов и простейших. Облигатный внутриклеточный паразитизм вирусов.
 - 6. Роль макроорганизма, внешней среды и социальных условий в возникновении и развитии инфекционного процесса.
 - 7. Звенья эпидемиологической цепи.
 - 8. Распространение микробов и их токсинов в организме.
 - 9. Динамика инфекционного процесса.
 - 10. Формы инфекций.
 - 11. Биологический метод исследования, его применение при изучении этиологии, патогенеза, иммуногенеза, диагностики, терапии и профилактики инфекционных заболеваний
 - 12. Способы экспериментального заражения и бактериологическое исследование лабораторных животных.
- б) Перечень практических навыков и умений, которыми необходимо овладеть:
 - 1. Соблюдение правил противоэпидемического режима и техники безопасности в бактериологической лаборатории.
 - 2. Обеззараживание инфицированного материала, антисептическая обработка рук, контаминированных исследуемым материалом или культурой микробов.
 - 3. Приготовление препаратов из патологического материала, окраска по Граму, микроскопия препаратов в световом микроскопе с иммерсионным объективом.

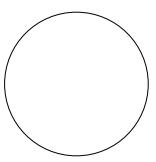
Литература:

1) c. 115-137; 2) c. 118; 124-126; 127-131; 3) c. 69-81; 4) c. 98-102, 115-157; 5) c. 5-11; 136; 6) 145-164; 7) c. 135-150.

Протокол практического занятия

Практические задания, подлежащие выполнению:

Задание № 1: Определить наличие факторов патогенности у исследуемых культур стафилококков, результаты внести в таблицу.


Факторы патогенности	Культура № 1	Культура № 2
Гемолизины		
Плазмокоагулаза		
Лецитиназа		

Примечание: "+" - наличие фактора патогенности; "-" - его отсутствие.

Задание № 2: Провести вскрытие погибшего экспериментально зараженного лабораторного животного.

Задание № 3: Приготовить мазки-отпечатки внутренних органов погибшего животного, окрасить по Граму.

Микроскопировать, зарисовать.

(охарактеризуйте микроорганизмы с учетом морфологических и тинкториальных свойств)

Дата		

Тема: Виды иммунитета. Факторы неспецифической защиты организма и методы их исследования.

Задания для самостоятельной работы:

- а) Перечень вопросов, подлежащих изучению:
 - 1. Понятие "иммунитет". Классификация иммунитета по происхождению, по направленности и механизму действия.
 - 2. Факторы неспецифической защиты организма: клеточные и тканевые, гуморальные, функциональнофизиологические.
 - 3. Фагоцитоз, понятие об опсонинах. Классификация фагоцитирующих клеток. Основные стадии фагоцитоза. Завершенный и незавершенный фагоцитоз.
 - 4. Методы изучения фагоцитарной активности: определение процента фагоцитирующих нейтрофилов, фагоцитарного числа.
 - 5. Гуморальные факторы неспецифической защиты. Методы их исследования.
- б) Перечень практических навыков и умений, которыми необходимо овладеть:
 - 1. Проводить учет и оценивать результаты реакции титрования лизоцима.
 - 2. Уметь определять процент фагоцитирующих нейтрофилов, фагоцитарное число.
 - 3. Микроскопия препаратов в световом микроскопе с иммерсионным объективом.

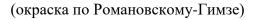
Литература:

1) c. 137-145; 182; 2) c. 148-165; 235-236; 4) c. 102-104; 5) c. 77-89; 103; 107-108; 6) c. 164-177; 222- 223; 7) c. 163-170; 203.

Протокол практического занятия

Практические задания, подлежащие выполнению:

Задание № 1: Определить титр лизоцима слюны.


Номер пробирки Ингредиенты	1	2	3	4	5	6	7	8 Контроль культуры
Физиологический раствор (МЛ)	1.8	1	1	1	1	1	1	1
Слюна (мл)	0.2	→ 1 J-	1	→ 1 <u></u>	→ 1 J-	1	1	\
Разведение	1:10	1:20	1:40	1:80	1:160	1:320	1:640	- 1
Тест-культура Micrococcus lysodeikticus (мл)	1	1	1	1	1	1	1	1
Учет результатов								

[&]quot;+"- лизис тест-культуры; "-"- отсутствие лизиса

Вывод:_____

Задание № 2: Рассмотреть под микроскопом и зарисовать препарат, который демонстрирует явление фагоцитоза.

Сделать соответствующие обозначения.

Задание № 3: Определить процент фагоцитирующих нейтрофилов и фагоцитарное число в мазках крови обследуемых.

Количество фагоцитирующих нейтрофилов	Количество "пустых"	Количест	гво захваченных нейтрофило	м частиц
	нейтрофилов	1-10	11-20	21 и больше
a	б	В	Γ	Д

Процент фагоцитирующих нейтрофилов =

Фагоцитарное число (количество частиц в одной клетке) $\frac{5 \cdot \textit{в} + 15 \cdot \textit{г} + 25 \cdot \textit{d}}{\textit{a}}$

Дата		

Тема: Приобретенный иммунитет. Антигены и антитела. Серологический метод микробиологической диагностики инфекционных заболеваний. Реакции преципитации и нейтрализации.

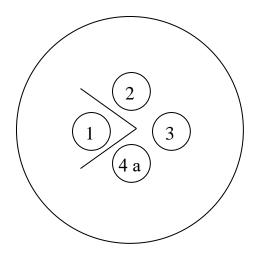
Задания для самостоятельной работы:

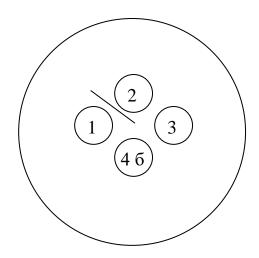
- а) Перечень вопросов, которые подлежат изучению:
 - 1. Антигены: определение, характеристика, классификация.
 - 2. Антигенное строение микроорганизмов. Локализация, химический состав и специфичность антигенов бактерий, вирусов, ферментов, токсинов. Роль микробных антигенов в инфекционном процессе и развитии иммунного ответа.
 - 3. Антигены гистосовместимости человека, их характеристика и функции.
 - 4. Антитела: определение, структура, классификация, синтез. Понятие о валентности антител. Антигенное строение иммуноглобулинов: изо-, алло-, идиотипические детерминанты. Практическое применение.
 - 5. Динамика образования антител. Первичный и вторичный иммунный ответ, их особенности.
 - 6. Понятие об иммунологической памяти и иммунологической толерантности.
 - 7. Серологические реакции, их механизмы и практическое использование.
 - 8. Основные компоненты серологических реакций. Диагностические иммунные сыворотки, диагностикумы. Моноклональные антитела, их использование.
 - 9. Реакции, основанные на феномене преципитации: кольцепреципитация, флокуляция, преципитация в геле. Практическое применение.
 - 10. Реакция нейтрализации (токсинов, вирусов, риккетсий). Практическое применение.
- б) Перечень практических навыков и умений, которыми необходимо овладеть:
 - 1. Уметь проводить учет и оценивать результаты реакций преципитации и нейтрализации.

Литература:

1) c.145-158; 177-179; 2) c.165-186; 193-198; 232-233; 238; 3) c.44-46; 63; 4) c.112-113; 115-117; 6) c.177-200; 220-221; 223; 7) c.170-181; 194-195; 197-200.

Протокол практического занятия


Практические задания, подлежащие выполнению:


Задание № 1: Поставить реакцию термокольцепреципитации (по Асколи) с преципитирующей сибиреязвенной сывороткой и экстрактом, который получен из органов погибшего животного. Сделать учет и оценить результаты.

Номер пробирки	Опыт	Контроль	Контроль	Контроль
	1	2	3	4
Ингредиенты (мл)				
Противосибиреязвенная сыворотка	0,5	0,5	0,5	
Исследуемый экстракт	0,5			
Нормальная сыворотка				0,5
Сибиреязвенный экстракт		0,5		0,5
Экстракт без сибиреязвенных антигенов			0,5	
Учет				

Вывод:		

Задание № 2: Провести учет и оценить результаты реакции преципитации в геле (демонстрация). Сделать вывод.

Реакция положительная/отрицательная (неправильное вычеркнуть)

Реакция положительная/отрицательная (неправильное вычеркнуть)

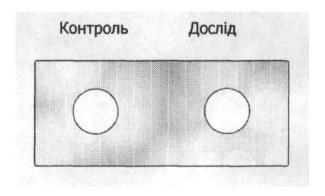
- 1. Специфическая иммунная преципитирующая сыворотка (противодифтерийная);
- 2. Известный антиген (токсигенная культура возбудителя дифтерии Corynebacterium diphtheriae);
- 3. Нормальная сыворотка;
- 4. Неизвестный антиген (исследуемые культуры Corynebacterium diphtheriae 4a и 4б).

Вывод:		

Дата		

Тема: Реакция агглютинации.

Задания для самостоятельной работы:


- а) Перечень вопросов, которые подлежат изучению:
 - 1. Центральные и периферические органы иммунной системы.
 - 2. Иммунокомпетентные клетки. Характеристика популяций Т- и В-лимфоцитов.
 - 3. Поверхностные маркеры и рецепторы иммунокомпетентных клеток.
 - 4. Кооперация между иммунокомпетентными клетками в процессе формирования иммунного ответа. Понятие об иммуномодуляторах, иммуностимуляторах и иммуносуппрессорах. Интерлейкины.
 - 5. Регуляция иммунного ответа (физиологическая и генетическая).
 - 6. Реакции, основанные на феномене агглютинации: прямая и непрямая агглютинация, реакция торможения непрямой гемагглютинации, реакция обратной непрямой гемагглютинации, реакция Кумбса антиглобулиновый тест. Ингредиенты, цель.
 - 7. Практическое использование реакции агглютинации.
- б) Перечень практических навыков и умений, которыми необходимо овладеть:
 - 1. Уметь поставить, провести учет и оценить результаты реакции агглютинации на стекле.
 - 2. Уметь проводить учет и оценивать результаты развернутой реакции агглютинации.
 - 3. Уметь проводить учет и оценивать результаты реакции непрямой гемагглютинации (РНГА).

Литература

1)c. 146-149; 172-177; 180-181;2) c. 182-183; 186-187; 192-193; 199-213; 214; 218-220; 229-230; 3) c. 34-43; 4) c. 107-112; 5) c. 91-105; 132-133; 6) c. 177; 178-179; 218-220; 223; 7) c. 171-173; 192-197; 202-203.

Протокол практического занятия: Практические задания, подлежащие выполнению:

Задание № 1: Поставить реакцию агглютинации на стекле с диагностической агглютинирующей брюшнотифозной сывороткой (разведение 1:10) и исследуемой суточной культурой бактерий. Сделать учет, зарисовать и оценить результаты.

Вывод:		

Задание № 2: Провести учет и оценить результаты развернутой реакции агглютинации (PPA) с сывороткой больного и брюшнотифным диагностикумом. Сделать вывод.

Номер пробирки Ингредиенты	1 →	2 -	3 -	4		6 Контроль диагностикума	7 Контроль сыворотки	
Физиологический раствор (мл)	_	1	1	1	1	1 -	_	
Сыворотка больного 1 :50 (МЛ)			1	1	1	_	1	1
Разведение сыворотки	1:50	1:100	1:200	1:400	1:800	_	1:50	1 мл
Диагностикум (капли)	5 -	5 →	5	5 -	5	5 -	_	
Учет результатов								

[&]quot;+" - образование осадка, надосадочная жидкость прозрачная;

Вывод:	 	

[&]quot;-" - отсутствие осадка, жидкость мутная.

Задание № 3: Провести учет и оценить результаты реакции непрямой гемагглютинации (РНГА), поставленной с сывороткой больного и эритроцитарным туляремийным диагностикумом. Сделать вывод.

эригроцигаривич тулире		1						1
Номер лунки Ингредиенты	1	2	3	4	5	6 контроль диагностикума	7 контроль сыворотки	
Физиологический раствор (мл)	0,25	0,25	0,25	0,25	0,25	0,25	_	
Сыворотка больного 1:50 (мл)	0,25	0,25	0,25	0,25	0,25		0,25	
Разведение сыворотки	1:100	1:200	1:400	1:800	1:1600	_	1:50	1 0,25 мл
Диагностикум (мл)	0,25	0,25	0,25	0,25	0,25	0,25	_	
Визуальная оценка результатов (зарисовать)								
Учет результатов								
	U		(11 11)					

[&]quot;+" - осадок большого диаметра, зернистый, с неровным краем ("коврик");

[&]quot;-" - осадок малого диаметра, плотный, однородный, с ровным краем ("-пуговка"). Вывод:

Тема: Реакция иммунного лизиса (бактериолиз, гемолиз). Реакция связывания комплемента (РСК).

Задания для самостоятельной работы:

- а) Перечень вопросов, которые подлежат изучению:
 - 1. Клеточный иммунный ответ. Виды иммунных реакций клеточного типа.
 - 2. Гуморальный иммунный ответ и его этапы.
 - 3. Реакция иммунного лизиса: компоненты, механизм, практическое применение.
 - 4. Реакция бактериолиза: компоненты, методика постановки, оценка результатов, практическое применение.
 - 5. Реакция иммунного гемолиза: компоненты, методика постановки, учет и оценка результатов. Применение.
 - 6. Реакция связывания комплемента (РСК): компоненты, механизм, методика постановки, учет и оценка результатов реакции, практическое применение.
- б) Перечень практических навыков и умений, которыми необходимо овладеть:
 - 1. Проводить учет и оценивать результаты реакции связывания комплемента.

Литература:

1) c. 160-167; 179-180; 2) c. 234-235; 3) c. 47-54; 4) c. 118-122; 107; 5) c. 105-106; 134-135; 6) c. 200-215; 221-222; 7) c. 185-192; 200-201.

Протокол практического занятия:

Практические задания, подлежащие выполнению:

Задание № 1: Провести учет и оценить результаты реакции связывания комплемента (РСК) с сывороткой больного и гонококковым

диагностикумом.

	0 0 1111111 11111111									
Ингредиенты (мл)	Исследуемая		TC			Гемолитичес	ская система		Уч	ет
Номер пробирки	сыворотка (разведение 1:10)	Антиген (рабочая доза)	Комплемент (рабочая доза)	Физраствор	. 1 час	Гемолитическа я сыворотка	Эритроциты барана	. 1 час	Гемолиз	РСК
1 (опыт)	0,5	0,5	0,5	-	37 ₀ C –	0,5	0,5	37 ⁰ C –		
2 (контроль сыворотки)	0,5	-	0,5	0,5	(4)	0,5	0,5	(*)		
3 (контроль антигена)	-	0,5	0,5	0,5		0,5	0,5			

«+» - положительный результат

«-» - отрицательный результат

Вывод:		
	·	

Тема: Реакции с использованием меченых антигенов и антител.

Задания для самостоятельной работы:

- а) Перечень вопросов, которые подлежат изучению:
 - 1. Реакция иммунофлюоресценции (РИФ): прямая и непрямая.
 - 2. Иммуноферментный анализ (ИФА): прямой, непрямой, твердофазный, конкурентный, иммуноблотинг.
 - 3. Радиоиммунный анализ (РИА): конкурентный, обратный, непрямой.
 - 4. Иммуноэлектронная микроскопия.
 - 5. Практическое использование указанных методов исследования.
- б) Перечень практических навыков и умений, которыми необходимо овладеть:
 - 1. Проводить учет и оценивать результаты реакции иммунофлюоресценции, иммуноферментного анализа.

Литература:

1) c. 182 - 183; 2) c. 233 - 234; 236-238; 3) c. 54 - 63; 4) c. 114 -115; 118; 5) c. 117 - 119, 126 -128; 6) c. 223-225; 7) c. 204.

Протокол практического занятия: *Практические задания, подлежащие выполнению:*

Задание № 1:	Зарисовать схему прямой и непрямой реакции имму	нофлюоресценции (РИФ).
	Прямая РИФ	Непрямая РИФ

Задание № 2: Зарисовать схему прямого и непрямого твердофазного иммуноферментного анализа (ИФА).

Прямой ИФА	Непрямой ИФА	

Задание № **3:** Провести учет и оценить результаты иммуноферментного анализа (ИФА) с целью выявления антител к антигенам возбудителя сифилиса. Внести результаты исследований в таблицу.

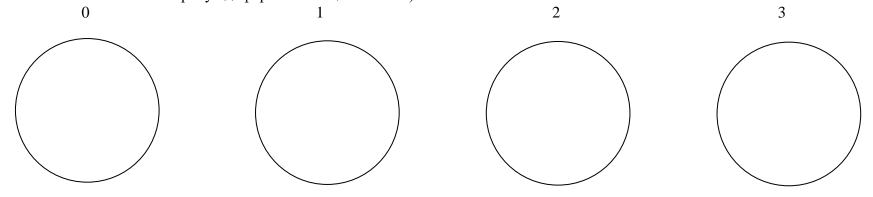
Данные фотометрии исследуемых образцов

	1	2	3	4	5	6	7	8	9	10	11	12
A												
В												
C												
D												
E												
F												
G							_		_			
Н												

Вывод:			

Дата				

Тема: Иммунный статус человека и методы его оценки. Природные и приобретенные иммунодефицитные состояния. Задания для самостоятельной работы:


- а) Перечень вопросов, которые подлежат изучению:
 - 1. Понятие об иммунном статусе. Иммунный статус как динамически уравновешенная система.
 - 2. Иммунодефицитные состояния и причины их возникновения.
 - 3. Первичные и вторичные иммунодефицитные состояния.
 - 4. Особенности иммунного ответа (реактивности) при нарушении наиболее уязвимых звеньев иммунной системы.
 - 5. Показатели, которые характеризуют состояние иммунной системы организма человека (иммунограмма):
 - а) неспецифические показатели (макрофаги, нормальные киллеры, комплемент, интерфероны, лизоцим);
 - б) специфические показатели (иммуноглобулины, Т- и В-лимфоциты и их субпопуляции, индекс стимуляции митогенами и другие).
 - 6. Методы оценки общего состояния иммунной системы и мотивы их выбора:
 - а) иммунологические тесты I уровня (ориентировочные): определение титра комплемента, оценка фагоцитарной активности нейтрофилов, общей концентрации основных классов иммуноглобулинов (IgA, IgM, IgG), количества лимфоцитов, Т- и В-лимфоцитов;
 - б) иммунологические тесты II уровня (аналитические): НСТ-тест, определение ЛКБ, количества Т- и В-лимфоцитов и их субпопуляций (CD4+, CD8+ и др.), специфических IgE, циркулирующих иммунных комплексов (ЦИК) функциональной активности лимфоцитов (реакция бласттрансформации лимфоцитов (РБТЛ).
 - 7. Общие правила, которых необходимо придерживаться при интерпретации иммунограмм.
 - 8. Практическая значимость оценки иммунограмм.
- б) Перечень практических навыков и умений, которыми необходимо овладеть:
 - 1. Научиться заполнять бланки иммунограмм.
 - 2. Уметь оценивать иммунограмму.

Литература: 1) с. 158-160; 183 -187; 2) с. 215-224; 148; 225 - 228; 4) с.102-107; 123 -125; 5) с. 108 - 112; 6) с.208-209; 216-218; 494-497; 221, 225 - 230; 7) с. 181 – 185; 212 - 216.

Протокол практического занятия:

Практические задания, подлежащие выполнению:

Задание № 1: Микроскопировать демонстрационные препараты для определения НСТ-теста, зарисовать нейтрофили разных групп (в зависимости от количества гранул диформазана в цитоплазме).

Задание № **2:** Оценить кислород-активирующую способность нейтрофилов с помощью НСТ-теста у обследуемых людей, используя результаты подсчета нейтрофилов в мазке крови и распределения их по группам:

	Обслед	уемые
	№ 1	№ 2
О – нейтрофилы без гранул		
1- нейтрофилы с единичными гранулами или с площадью окрашенной цитоплазмы до 25-30%		
2 – нейтрофилы с цитоплазмой, на 30-70% заполненной гранулами диформазана		
3 - нейтрофилы, цитоплазма которых на 100% была заполнена гранулами диформазана		

Вывод:	
Обследуемый № 2 СЦК =	
Обследуемый № 1 СЦК =	
Рассчитать среднии цитохимический коэффициент (СЦК), внести в оланки иммунограмм.	

Задание № 3: Определить концентрацию иммуноглобулинов классов A, M, и G в сыворотках крови обследуемых с помощью иммуноферментного метода по результатам фотометрии контрольных и исследуемых образцов, используя обратно-пропорциональный расчет и учитывая концентрацию иммуноглобулинов в контрольных пробах:

IgA -1,59 мг/мл; IgM -1,32 мг/мл; IgG - 8,95 мг/мл. Результаты фотометрии внести в таблицу. Выявленные концентрации Ig (A, M, G) занести в бланки иммунограмм.

	1	2	3	4	5	6	7	8	9	10	11	12
A	б	3	7	11	б	3	7	11	б	3	7	11
В	б	3	7	11	б	3	7	п	б	3	7	11
С	кс	4	8	12	кс	4	8	12	кс	4	8	12
D	кс	4	8	12	кс	4	8	12	кс	4	8	12
Е	1	5	9	13	1	5	9	13	1	5	9	13
F	1	5	9	13	1	5	9	13	1	5	9	13
G	2	6	10	14	2	6	10	14	2	6	10	14
Н	2	6	10	14	2	6	10	14	2	6	10	14
		Ig	gA	<u>I</u>		Ig	g M	1		Ιg	gG	<u>I</u>

	Обследуемый №1	Обследуемый №2
IgA		
IgM		
IgG		

Вывод:	

Задание № 4: Внести в бланк иммунограммы результаты обследования пациентов, оценить полученные результаты. Иммунограмма

		<u> </u>	прамма	07 > 22	105
Показатели	Содержание в 1 мкл (%)	1		Обследованный №	Обследованный № 2
Абсолютное число лейкоцитов	4500-7000 (100 %)				
В том числе: нейтрофилов	4000 (65%)				
Эозинофилов	200-400 (4%)				
Абсолютное число лимфоцитов	1500-2000 (25%)				
-CD3 (Т-общие)	800-1200				
-CD4 (Т-хелперы)	500-900				
-CD8 (Т-киллеры)	400-600				
-CD16 (NK)	170-400				
-CD20 (В-клетки)	200-400				
HLA II	340-720				
Иммуноглобулины					
IgG	8-12 г/л				
IgM	0.5-1,9 г/л				
IgA	1,4-4,2 г/л				
IgE	20-100 КЕ/л				
ЦИК, (услов.ед.)	20-80				
Фагоцитоз					
	Спонтанный	Стимулированны й	Индекс стимуляции		
НСТ-тест (ед.млн.кл.)	70-120	150-200	1,2-2		
Фагоцитоз (%)	48-88				
Индекс фагоцитоза	1,3-3				
Адгезия (%)	40-55	70-80			
Реакция бласттрансформа	ации	1	<u> </u>		
				1	

	ΦΓΑ	PWM	
РБТЛ	20-100	5-20	
Комплемент			
C1q		100-250	
C3		700-1800	
C4		200-500	
C5a		0,01-0,03	

Вывод		
· <u>-</u>		

1. Определение числа лейкоцитов в крови.

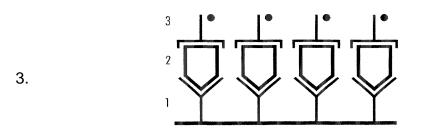
Метод основан на подсчете лейкоцитов в единице объема (л или мкл) крови при постоянном разведении крови и определенном объеме камеры для подсчета. Подсчет лейкоцитов ведут при малом увеличении микроскопа (объектив x8, окуляр x10), затемненном поле зрения (опущенный конденсор или суженная диафрагма) в 100 больших квадратах камеры Горяева, полученное число множат на 50, выражают в виде а· 10^9 /л или тис/мкл.

2. Определение числа лимфоцитов в крови.

Определение числа лимфоцитов в крови проводят путем подсчета лейкоцитарной формулы, определяют процентное соотношение лейкоцитов в мазке крови, окрашенном по Романовскому-Гимза или Папенгейму. Зная процентное содержание лимфоцитов и общее число лейкоцитов в единице объема крови, находят абсолютное количество лимфоцитов в крови (в 1 л или мкл).

3. Определение субпопуляционного состава лимфоцитов крови методом непрямой иммунофлюоресценции.

Принцип метода: специфические моноклональные антитела связываются с мембранными антигенами (рецепторами CD3, CD4, CD8, CD16, CD20 и др.) живых клеток (лимфоцитов), которые находятся в суспензии. Для выявления данного комплекса используют антивидовые антитела к иммуноглобулинам, меченые флюорохромом. При люминесцентной микроскопии препаратов определяют процентное содержание лимфоцитов определенной субпопуляции, а затем высчитывают их абсолютное количество и соотношение отдельных субпопуляций (CD4/CD8, CD3/CD20).

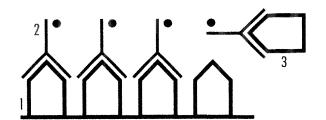

4. Определение концентрации Ig A, M, G.

Для количественного определения иммуноглобулинов в сыворотке крови и других биологических жидкостях человека используют твердофазный метод иммуноферментного анализа (ИФА).

Прямой твердофазний метод ИФА_ основан на принципе "сендвича". Анализ проводится в две стадии.

На первой стадии контрольные образцы с известной концентрацией иммуноглобулинов (A, M, G) и исследуемые пробы инкубируются в лунках полистиролового планшета с иммобилизированными моноклональными антителами (МКАТ) к иммуноглобулинам (A, M, G). Потом планшет "отмывается" (для удаления из системы других, неспецифически связанных с моноклональными антителами компонентов). **На второй стадии** иммуноглобулин (A, M, G), который связался в лунках, обрабатывают коньюгатом МКАТ к Ig (A, M, G) человек с пероксидазой (МКАТ в составе коньюгата и иммобилизованы в лунках планшета МКАТ специфические к разным участкам молекулы Ig (A, M, G).

После "отмывки" избытка коньюгата иммунные комплексы "иммобилизированные МКАТ -1g (A, M, G) - коньюгат" выявляют ферментативной реакцией пероксидазы с перекисью водорода в присутствии хромогена. Интенсивность окраски хромогена пропорциональна концентрации Ig (A, M, G) в исследуемом образце. После остановки пероксидазной реакции стоп-реагентом результаты регистрируют фотометрией образцов (измеряют оптическую плотность в лунках планшета при 492 нм).



- 1- МКАТ к Ig (A,M,G), иммобилизированные в лунках планшета;
- 2- Ід (А,М,С) исследуемых образцов;
- 3.-коньюгат (МКАТ к Ід (А,М,G) с ферментной меткой.

Конкурентный твердофазный метод ИФА.

В лунки полистиролового планшета с иммобилизованными иммуноглобулинами человека (IgA - 1-4 ряда, IgM - 5-8 ряды, IgG - 9 –12 ряды) вносят контрольные сыворотки ("кс") с известной концентрацией Ig (A, M, G), исследуемые образцы (14) и фосфатно-солевой буфер ("б", используется для разведения образцов, контролей, коньюгатов, промывания планшета). Непосредственно после этого в лунки вносят соответствующие растворы коньюгатов (коньюгат A)

(МКАТ к IgA с ферментной меткой – пероксидазой) – в 1-4 ряда, коньюгат М – в 5-8 рядах, коньюгат G в 9-12 рядах). Иммуноглобулины, которые содержатся в исследуемых образцах, конкурируют с иммобилизированными на плотной фазе иммуглобулинами за связь с коньюгатом. Степень связывания введенных МКАТ с иммуноглобулинами плотной фазы снижается (их "перехватывают" иммуноглобулины исследуемых образцов). После инкубации планшет промывают. Связь МКАТ в составе коньюгата с иммобилизированными иммуноглобулинами оценивают посредством ферментативной реакции пероксидазы с перекисью водорода в присутствии хромогена. Для этого в лунки вносят субстратну смесь (субстрат – H₂O₂ и хромоген) и опять инкубируют. После остановки стоп-реагентом ферментативной реакции результаты регистрируют фотометрией образцов.

- 1 -иммобилизованные в лунках планшета иммуноглобулины (A.M.G):
- 2 -МКАТ к Ід (А,М,G) с ферментной меткой;
- 3 -иммуноглобулины (А,М,G) исследуемых образцов.

Концентрацию иммуноглобулинов (A, M, G) в исследуемых образцах определяют по калибровочному графику, или используют обратно пропорциональный расчет:

$$\frac{P_{\kappa}}{P_{\kappa}} = \frac{C_{\kappa}}{C_{\kappa}}$$
, де

Рк - оптическая плотность контрольного образца

Рх - оптическая плотность исследуемого образца

Ск - концентрация иммуноглобулина в контрольном образце

Сх - концентрация иммуноглобулина в исследуемом образце.

Исходя из этого:

$$C_{x} = \frac{P_{\kappa} \cdot C_{\kappa}}{P_{x}}$$

5. Определение циркулирующих иммунных комплексов (ЦИК).

В основе метода лежит способность раствора полиэтиленгликоля (ПЭГ) осаждать из сыворотки агрегированные иммуноглобулины и иммунные комплексы. Низкие концентрации ПЭГ осаждают комплексы больших размеров, высокие концентрации вызывают преципитацию низкомолекулярных соединений. Изменение плотности растворов регистрируется на спектрофотометре при длине волны 280 нм.

6. Определение фагоцитарной активности нейтрофилов.

В основе метода лежит способность фагоцитов (нейтрофилов) захватывать частицы латекса, которые окрашиваются по Романовскому-Гимза в голубой цвет. Под микроскопом просматривают 100 лейкоцитов (нейтрофилов) и определяют количество захваченных ими частиц, поглощенных в среднем одним нейтрофилом и процент фагоцитуючих нейтрофилов - то есть, количество нейтрофилов из 100, которые проявили фагоцитарную активность (а).

Количество фагоцитирующих	Количество	оличество Количество захваченных нейтрофилом частиц			
нейтрофилов	"пустых" нейтрофилов	1-10	11-20	21 и больше	
a	б	В	Γ	Д	

фагоцитарне число (количество частиц в одной клетке) = $\frac{5 \cdot B + 15 \cdot \Gamma + 25 \cdot A}{a}$

где 5, 15, 25 - количество частиц в одном нейтрофиле; θ , θ , θ - количество нейтрофилов.

7. Определение кислород-активирующей способности нейтрофилов с помощью НСТ-теста.

Метод основан на способности зрелых гранулоцитов востанавливать за счет активных форм кислорода (супер-оксиданионрадикал, который выделяется при активации дыхательного взрыва нейтрофилов) пиноцитированные светло-желтого цвета краситель тетразолиевого ряда - нитросиний тетразолий (НСТ) до нерастворимой формы - диформазана, который имеет вид темно-синих гранул в цитоплазме нейтрофилов. Применяют спонтанный и стимулированный (убитой культурой золотистого стафилококка или зимозаном) НСТ-тест. В мазке крови при иммерсионной микроскопии подсчитывают 100 нейтрофилов, распределяя их по группам в зависимости от количества гранул диформазана в цитоплазме.

- 0 нейтрофилы без гранул;
- 1 нейтрофилы с единичными гранулами или с площадью окрашенной цитоплазмы до 25-30%;
- 2 нейтрофилы с цитоплазмой, на 30-70% заполненной гранулами диформазана;
- 3 нейтрофилы, цитоплазма которых на 100% была заполнена гранулами диформазана. Рассчитывают средний цитохимический коэффициент по формуле:

CLIK =
$$\frac{0 \cdot a + 1 \cdot 6 + 2 \cdot B + 3 \cdot \Gamma}{100}$$

где a, δ , ϵ , δ - количество нейтрофилов одной группы; θ , θ , θ - группы нейтрофилов. Если применяют спонтанный и стимулированный HCT-тест, то рассчитывают индекс стимуляции:

$$IC = \frac{C \coprod K \text{ стимульованого HCT-тесту}}{C \coprod K \text{ спонтанного HCT-тесту}}$$

8. Определение лизосомальных катионных белков (ЛКБ).

Катионные белки - это неферментные белки, медиаторы воспаления, которые локализуются в лизосомах гранулоцитов и играют важную роль в реализации бактерицидной функции нейтрофилов. ЛКБ - это метод, который позволяет быстро определить сдвиг в уровне неспецифической резистентности и дать оценку тяжести заболевания.

В основе цитохимического исследования катионных белков - использование диахромних анионных красителей.

Лизосомы нейтрофильных, эозинофильных гранулоцитов и бактерии, которые погибли под воздействием катионных белков окрашиваются в один цвет (в зависимости от красителя, который применяется: забуференный спиртной раствор прочного зеленого - в зеленый, бромфеноловый синий - в синий), а клеточные элементы (ядра) и жизнеспособные бактерии - в другой (при применении азура А - в сиреневый и синий цвета, сафранина - оранжевый и красный). При иммерсийной микроскопии препарата (мазка крови, костного мозга, мокроты, препарата-отпечатка с поверхности очага воспаления, смывов из бронхов) подсчитывают 100 нейтрофилов, распределяя их по группам в зависимости от наличия позитивной реакции на КБ и их интенсивности:

- 0 не дают позитивной реакции на катионные белки;
- 1 дают слабо выраженную позитивную реакцию;
- 2 дают выраженную позитивную реакцию;

3 - дают ярко выраженную позитивную реакцию. Рассчитывают средний цитохимичний коэффициент по формуле:

CLIK =
$$\frac{a \cdot 0 + 6 \cdot 1 + \mathbf{B} \cdot 2 + \mathbf{\Gamma} \cdot 3}{100}$$

Дата				
				_

Тема: Иммунопрофилактика и иммунотерапия инфекционных болезней.

Задания для самостоятельной работы:

- а) Перечень вопросов, подлежащих изучению:
 - 1. Активная и пассивная иммунопрофилактика и иммунотерапия.
 - 2. Вакцины: типы, получения, оценка эффективности и контроль. Адъюванты.
 - 3. Вакцинопрофилактика и вакцинотерапия. Аутовакцины.
 - 4. Противопоказания и осложнения, которые наблюдаются при вакцинопрофилактике и вакцинотерапии. Предупреждение осложнений.
 - 5. Сыворотки: классификация, принципы получения, очистки и контроля сывороток и иммуноглобулинов.
 - 6. Серопрофилактика и серотерапия.
 - 7. Осложнения при серотерапии и серопрофилактике. Предупреждение осложнений.
- б) Перечень практических навыков и умений, которыми необходимо овладеть:
 - 1. Проводить учет и оценивать результаты серологичних реакций.

Литература: 1) с.183 -187; 2) с. 225 - 228; 4) с.123 -125; 5) с. 108 - 112; 6) с.225 - 230; 7) с. 212 - 216; 8) с. 139 - 141, 170 – 175;

Протокол практического занятия:

Практические задания, подлежащие выполнению:

Задание № 1: Провести учет и оценить результаты реакции флокуляции (РФ). По инициальной флокуляции определить количество иммуногенных единиц (ИЕ) в 1 мл анатоксина, используя нижеприведенную схему титрации антоксина антитоксической сывороткой известной силы (800 AE в 1 мл) и объяснением.

Ингредиенты	Пробирки					
	1	2	3	4	5	6
Анатоксин	2,0 мл	2,0 мл	2,0 мл	2,0 мл	2,0 мл	2,0 мл
Антитоксическая	0,1 мл	0,2 мл	0,3 мл	0,4 мл	0,5 мл	0,6 мл
сыворотка						
Результат						
(флокуляция)						

Пробирки выдерживают при температуре 45°C и отмечают ту пробирку, в которой раньше, чем в других произошла флокуляция (+) . Инициальная флокуляция (наиболее интенсивная и ранняя) наступает при полной нейтрализации антигена и отсутствии неизрасходованных антител. То есть, в пробирке, где наступила инициальная флокуляция, количество антитоксических единиц (АО) сыворотки эквивалентна количеству иммуногенных единиц (ИО) анатоксина:

ИЕ в 2 мл анатоксина = АЕ в мл антитоксической сыворотки;	
AE вмл сыворотки = AE в 1 мл сыворотки (800 AE) х мл сыворотки	
ИЕ в $\overline{1}$ мл анатоксина= ИЕ в 2-х мл анатоксина: $2 = \underline{\hspace{1cm}}$ ИЕ	
Вывод:	_

Задание № 2: Провести учет и оценить результаты реакции флокуляции (РФ). По инициальной флокуляции определить силу антитоксической сыворотки (количество АО в 1 мл), используя нижеприведенную схему титрации токсина антитоксической сывороткой и объяснение.

Ингредиенты		Пробирки					
	1	2	3	4	5	6	
Токсин	2,0 мл	2,0 мл	2,0 мл	2,0 мл	2,0 мл	2,0 мл	
Антитоксическая	0,1 мл	0,2 мл	0,3 мл	0,4 мл	0,5 мл	0,6 мл	
сыворотка							
Результат							
(флокуляция)							

Пробирки выдерживают при температуре 45⁰C и отмечают ту пробирку, в которой раньше, чем в других произошла флокуляция (+). Инициальна флокуляция (наиболее интенсивная и ранняя) наступает при полной нейтрализации антигена и отсутствии неизрасходованных антител. То есть, в пробирке, где наступила инициальна флокуляция, количество антитоксических единиц (AE) сыворотки эквивалентна количеству иммуногенных единиц (ИО) токсина:

При титрации антитоксической сыворотки необходимо знать количество DLM, которое содержится в 1 мл токсина и количество DLM, которое нейтрализует 1 AE антитоксической сыворотки.

Нам нужно протитровать антитоксическую дифтерийную сыворотку.

Известно, что в 1 мл токсина содержится 5000 DLM, а 100 DLM дифтерийного токсина нейтрализуется 1 АЕ дифтерийной антитоксической сыворотки. Таким образом, 10000 DLM, которые содержатся в двух милилитрах токсина, будут нейтрализованы 100 АО дифтерийной сыворотки. То есть, в пробирке, где наступит инициальна флокуляция, в соответствующем объеме антитоксической сыворотки будет содержать 100 АЕ.

Сила антитоксической сыворотки	100 AE		AE
(количество АЕ в 1 мл)	обьем (в мл) антитоксической сыворотки в пробирке	_	
	где наступила инициальная флокуляция		
Вывод:			

профилактики и соответствующ		і. Характеристики рассмотренных пр	репаратов внести в
	Вакі	цины	
	Вакцина №1	Вакцина №2	Вакцина №3
Название			
Тип			
Состав			
Назначение			
Форма воспроизводимого иммунитета			

Сыворотки

	Сыворотка № 1	Сыворотка № 2	Сыворотка № 3
Название			
Степень очистки			
(метод получения)			
Состав (характер антител)			
Назначение			
Форма воспроизводимого			
иммунитета			

Подпись преподавателя_____

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 21

Тема: Итоговый контроль усвоения модуля I «Морфология и физиология микроорганизмов. Инфекция. Иммунитет» (Модули 1-9).

Задания для самостоятельной работы:

- а) Перечень контрольных вопросов:
 - 1. Значение медицинской микробиологии в практической деятельности врача Предмет и задачи медицинской микробиологии. Методы микробиологическоко исследования.
 - 2. Этапы развития микробиологии.
 - 3. Принципы организации. Аппаратура и режим работы микробиологической лаборатории.
 - 4. Микроскопические методы исследования микроорганизмов: иммерсионная, фазовоконтрастная, темнопольная, люминесцентная, электронная микроскопия.
 - 5. Строение светового микроскопа.
 - 6. Правила микроскопии в световом микроскопе с иммерсионным объективом.
 - 7. Классификация микроорганизмов по форме, количеству и взаимному расположением клеток.
 - 8. Этапы приготовления препаратов для микроскопического исследования культур бактерий.
 - 9. Этапы приготовления препаратов для микроскопического исследования патологического материала.
 - 10. Простые методы окраски, их методика.
 - 11. Структура бактериальной клетки. Клеточная стенка, периплазма, цитоплазматическая мембрана, цитоплазма, нуклеоид, рибосомы, мезосомы, плазмиды.
 - 12. Химический состав и функции структурных компонентов бактериальной клетки.
 - 13. Полиморфизм бактерий. Свойства L-форм бактерий.
 - 14. Сложные методы окраски. Метод Грама.
 - 15. Механизмы взаимодействия красителей со структурами бактериальной клетки.
 - 16. Факторы, которые влияют на окраску бактерий по Граму.
 - 17. Включения: химический состав, функции, практическое значение. Методы выявления включений.
 - 18. Капсулы бактерий: строение, химический состав, функциональное значение. Методы выявления. Окраска по методу Гинса-Бурри.

- 19. Жгутики, реснички: строение, расположение на поверхности бактериальной клетки, функциональное значение. Методы выявления жгутиков. Окраска по методу Леффлера.
- 20. Выявление подвижности бактерий. Приготовление препаратов "висячая" капля и "раздавленная" капля.
- 21. Строение, химический состав, динамика образования спор, функциональное значение. Патогенные спорообразующие бактерии.
- 22. Факторы, которые обеспечивают высокую устойчивость микроорганизмов к действию факторов внешней среды.
- 23. Окраска спор по методу Ожешко и Пешкова.
- 24. Кислотоустойчивые бактерии, особенности их химического состава. Патогенные представители.
- 25. Метод окраски по Цилю-Нильсену.
- 26. Классификация, морфология и структура спирохет. Методы изучения их морфологии. Патогенные представители.
- 27. Классификация, морфология и структура грибов. Методы изучения их морфологии. Патогенные представители.
- 28. Актиномицеты, морфология и структура. Методы изучения их морфологии. Патогенные представители.
- 29. Классификация, морфология и структура простейших. Методы изучения их морфологии. Патогенные представители.
- 30. Классификация, морфология и структура риккетсий. Методы их выявления. Патогенные представители.
- 31. Хламидии и микоплазмы: морфология и структура. Методы их выявления.
- 32. Физиология микроорганизмов. Культивирование бактерий.
- 33. Питание бактерий. Источники азота, углерода, минеральных веществ и ростовых факторов.
- 34. Классификация бактерий по типам питания. Голофитный способ питания. Механизмы переноса питательных веществ в бактериальную клетку.
- 35. Дыхание бактерий. Аэробный и анаэробный способ окисления. Аэробы, анаэробы, факультативные анаэробы, микроаэрофилы, капничные бактерии.
- 36. Конститутивные и индуктивные ферменты бактерий. Экзо- и эндоферменты.
- 37. Методы изучения ферментативной активности бактерий и использование их для идентификации бактерий.
- 38. Современные методы идентификации бактерий с помощью автоматизированных ферментных систем идентификации.
- 39. Использование бактерий и их ферментов в биотехнологии для получения аминокислот, витаминов, гормонов, пептидов, органических кислот, антибиотиков, кормовых белков, обработки пищевых и промышленных продуктов, биологической очистки сточных вод, получения жидкого и твердого топлива.
- 40. Рост и размножение микробов. Вегетативные формы и формы покоя микробов.
- 41. Простое деление. Фрагментация.
- 41. Фазы размножения микроорганизмов в жидких питательных средах в стационарных условиях.
- 42. Культуральные свойства бактерий.
- 43. Основной принцип культивирования бактерий. Питательные среды. Требования к питательным средам.
- 44. Выделение чистых культур анаэробных и аэробных бактерий.
- 45. Способы идентификации выделенных культур. Дополнительное изучение свойств, необходимых для лечения и эпидемиологических целей.

- 46. Бактериологический метод микробиологической диагностики инфекционных заболеваний.
- 47. Эволюция микроорганизмов. Систематика, классификация и номенклатура микроорганизмов.
- 48. Генетика бактерий. Основы биотехнологии и генной инженерии.
- 49. Стерилизация. Методы стерилизации.
- 50. Асептика, антисептика, дезинфекция.
- 51. Микробиологические основания антимикробной химиотерапии.
- 52. Понятие о химиотерапевтических препаратах. Химиотерапевтический индекс.
- 53. Антибиотики, определение, понятие.
- 54. Единицы измерения антимикробной активности антибиотиков.
- 55. Классификация антибиотиков по происхождению, спектру действия, по характеру антимикробного действия и механизму действия.
- 56. Методы определения чувствительности бактерий к антибиотикам: метод стандартных дисков и метод серийных разведений.
- 57. Осложнения антибиотикотерапии. Дисбактериозы и их профилактика.
- 58. Наследственная и приобретенная устойчивость микроорганизмов к антибиотикам. Генетические и биохимические механизмы антибиотикорезистентности. Роль плазмид и транспозонов в формировании лекарственной устойчивости у бактерий.
- 59. Пути предупреждения формирования резистентности у бактерий к антибиотикам.
- 60. Учение об инфекционном процессе.
- 61. Определение понятия "инфекция", "инфекционный процесс", "инфекционная болезнь".
- 62. Условия возникновения инфекционного процесса.
- 63. Роль микроорганизмов в инфекционном процессе. Патогенность, вирулентность. Единицы вирулентности.
- 64. Факторы патогенности микроорганизмов: адгезины, инвазины, ферменты патогенности, структуры и вещества бактерий, которые подавляют фагоцитоз, эндотоксины, белковые токсины (экзотоксины).
- 65. Роль макроорганизмов, внешней среды и социальных условий в возникновении и развитии инфекционного процесса.
- 66. Звенья эпидемиологической цепи.
- 67. Распространение микробов и их токсинов в организме.
- 68. Динамика инфекционного процесса.
- 69. Формы инфекций.
- 70. Биологический метод исследования, его применение при изучении этиологии, патогенеза, иммуногенеза, диагностики, терапии и профилактики инфекционных заболеваний.
- 71. Способы экспериментального заражения и бактериологическое исследование лабораторных животных.
- 72. История развития иммунологии.
- 73. Понятие об иммунитете. Классификация. Видовой и индивидуальный иммунитет.
- 74. Неспецифические факторы иммунитета: клеточные и тканевые, гуморальные, функционально-физиологические.

- Характеристика, функции.
- 75. Индивидуальный иммунитет. Классификация.
- 76. Система приобретенного иммунитета. Центральные и периферические органы иммунной системы. Иммунокомпетентные клетки: Т- и В-лимфоциты и макрофаги.
- 77. Характеристика популяций Т- и В-лимфоцитов.
- 78. Антигены. Понятие о чужеродности, антигеннисти, иммуногенности и специфичности. Полноценные антигены, гаптены, полугаптены.
- 79. Антигенное строение бактерий, вирусов.
- 80. Антигенное строение токсинов, анатоксинов, бактериальных ферментов.
- 81. Антигены главного комплекса гистосовместимость (HLA) их характеристика и функции.
- 82. Кооперация между иммунокомпетентными клетками в процессе иммунного ответа организма. Регуляция иммунного ответа (физиологическая, генетическая).
- 83. Антитела. Структура и функции иммуноглобулинов. Понятие о валентности антител. Антигенные свойства иммуноглобулинов: изо-, ало-, идиотипы. Понятие о моноклональных антителах.
- 84. Классы иммуноглобулинов, их свойства, уровень содержания в сыворотке крови.
- 85. Динамика антитилообразования. Первичный и вторичный иммунный ответ, их особенности.
- 86. Понятие об иммунологической памяти и иммунологической толерантности.
- 87. Формы противоинфекционного иммунитета: по связи с возбудителем (стерильный и нестерильный), по охвату организма (общий и местный), по механизму (гуморальный, клеточный, смешанный), по направленности (антитоксический, антибактериальный, противовирусный, антигрибковый, противопаразитарный).
- 88. Современные теории иммуногенеза.
- 89. Иммунопрофилактика и иммунотерапия. Вакцины и сыворотки (их назначение). Типы вакцин: живые, химические убитые, комбинированные, анатоксины, рекомбинантные (генно-инженерные), антиидиотопические, рибосомальные. Их назначение, принцип получения, степень эффективности.
- 90. Вакцинотерапия. Препараты. Степень эффективности. Механизм действия.
- 91. Противопоказания и осложнения, которые наблюдаются при вакцинотерапии и вакцинопрофилактике. Предупреждение осложнений.
- 92. Классификация иммунных сывороток: по цели применения, характеру антител, происхождению. Методы получения. Степень эффективности. Дозировка.
- 93. Классификация иммунных сывороток по степени очистки от балластных белков. Принципы очистки.
- 94. Осложнения при серотерапии и серопрофилактике. Предупреждение осложнений.
- 95. Иммунодефицитные состояния (понятие, принципы классификации).
- 96. Аутоимунные заболевания (понятие, механизм реализации, проявления).
- 97. Понятие об иммунном статусе организма. Иммунокоректирующая терапия.
 - 98. Практическое применение серологичного метода исследования: серологическая идентификация, серологическая диагностика.

- 99. Серологические реакции: РП, РН. РНГА, РТГА, РСК. Ингредиенты реакций, механизм, техника постановки, учет, оценка результатов, назначение.
- 100. Серологические реакции с использованием метки: РИФ, ИФА, РИА. Ингредиенты реакций, техника постановки, учет, оценка результатов, назначение.
- 101. Опсоно-фагоцитарная реакция.
- 102. Иммунологические основы аллергических реакций. Аллергены. Кожные аллергические пробы.
- 103. Решение ситуационных задач.

- 1. Соблюдение правил противоэпидемического режима и техники безопасности в микробиологической лаборатории.
- 2. Микроскопия препаратов в световом микроскопе с иммерсионным объективом.
- 3. Изготовление препаратов для микроскопического исследования.
- 4. Изготовление препаратов для микроскопического исследования из патологического материала.
- 5. Окраска препаратов простыми методами: водными растворами фуксина и метиленового синего.
- 6. Окраска препаратов сложными методами: по Граму, Цилю-Нильсену, Леффлеру, Романовскому-Гимза.
- 7. Дифференциация микроорганизмов по морфологическим и тинкториальным признакам.
- 8. Приготовление препаратов "раздавленная" капля и "висячая" капля для микроскопического исследования.
- 9. Обеззараживание инфицированного материала, обработка антисептиком рук, контаминированных исследуемым материалом или культурой микробов.
- 10. Уметь готовить к стерилизации посуду, питательные среды.
- 11. Посев исследуемого материала тампоном, пипеткой и петлей на плотные, полужидкие и жидкие питательные среды.
- 12. Выделение чистых культур аэробных и анаэробных бактерий, осуществление идентификации по морфологическими, тинкториальным, культуральным, ферментативным свойствами.
- 13. Определять чувствительность микроорганизмов к антибиотикам.
- 14. Уметь определять процент фагоцитирующих нейтрофилов, фагоцитарное число.
- 15. Проводить учет и оценивать результаты реакции титрования лизоцима.
- 16. Проводить учет и оценивать результаты серологических реакций.
- 17. Уметь проводить учет и оценивать результаты реакций преципитации и нейтрализации.
- 18. Уметь поставить, провести учет и оценить результаты реакции агглютинации на стекле.
- 19. Уметь проводить учет и оценивать результаты развернутой реакции агглютинации.
- 20. Уметь проводить учет и оценивать результаты реакции непрямой гемагглютинации (РНГА).
- 21. Проводить учет и оценивать результаты реакции связывания комплемента.
- 22. Проводить учет и оценивать результаты реакции иммунофлюоресценции, иммуноферментного анализа.
- 23. Научиться заполнять бланки иммунограмм.
- 24. Уметь оценивать иммунограмму.

Вопросы к экзамену по практическим навыкам (модуль 1)

- 1. Промикроскопировать препарат, определить метод окраски, морфологию и тинкториальные свойства бактерий. (препараты для микроскопии: 1) стафилококк, 2) стрептококк, 3) монобактерии Гр-, 4) капсульные бактерии, 5) споры по Ожешко, 6) споры по Пешкову, 7) споры по Граму, 8) дрожжеподобные грибы, 9) незавершенный фагоцитоз диплококков).
- 2. Приготовить препарат из культуры бактерий, выращенной на плотной питательной среде, окрасить по Граму-Синеву. Промикроскопировать, определить морфологию и тинкториальные свойства.
- 3. Приготовить препарат из культуры бактерий, выращенной на плотной питательной среде, окрасить простым методом. Промикроскопировать, определить морфологию.
- 4. Приготовить препарат из мокроты больного, окрасить по Цилю-Нильсену, промикроскопировать, определить морфологию.
- 5. Принципиальный состав и механизм действия среды Ендо. Практическое применение.
- 6. Принципиальный состав и механизм действия среды Левина. Практическое применение.
- 7. Принципиальный состав и механизм действия среды Плоскирева. Практическое применение.
- 8. Практическое применение среды Китта-Тароцци, принципиальный состав и механизм действия.
- 9. Провести учет биохимических свойств выделенной чистой культуры бактерий. Сделать вывод.
- 10. Определить чувствительность культуры стафилококка к антибиотикам методом диагностических дисков. Провести учет, сделать вывод.
- 11. Определить минимальную подавляющую концентрацию культуры стафилококка для цефазолина по методу серийных разведений. Провести учет, сделать вывод.
- 12. Поставить реакцию термокольцепреципитации по Асколи с целью выявления антигенов возбудителей сибирской язвы в исследуемых экстрактах животноводческого сырья. Провести учет, сделать вывод.
- 13. Поставить реакцию агглютинации на стекле с неизвестной культурой и брюшнотифозной диагностической агглютинирующей сывороткой. Провести учет, сделать вывод.
- 14. Провести учет РЗК с сывороткой больного и гонококовой диагностикумом, сделать вывод.
- 15. Описать культуральные свойства бактерий на плотной питательной среде.
- 16. Определить титр лизоцима слюны по методу серийных разведений.
- 17. Сделать учет и оценить результаты реакции преципитации в геле, поставленной с целью определения токсигенности исследуемых культур коринебактерий дифтерии.
- 18. Провести учет и оценить результаты развернутой реакции агглютинации с сывороткой больного и брюшнотифозным диагностикумом.
- 19. Провести учет и оценить результаты реакции непрямой гемагглютинации (РНГА), поставленной с сывороткой больного и эритроцитарным туляремийным диагностикумом.
- 20. Провести учет и оценить результаты иммуноферментного анализа (ИФА) с целью выявления антител к антигенам возбудителя сифилиса.

СОДЕРЖАНИЕ

1.	Принципы организации, аппаратура и режим работы микробиологической лаборатории Методы микроскопического исследования. Бактериоскопический метод диагностики инфекционных заболеваний
2.	Морфология бактерий. Техника приготовления препаратов из культур бактерий и патологического материала. Простые методы окраски
3.	Структура бактериальной клетки. Сложные методы окраски. Метод Грама
4.	Структура бактериальной клетки: включения, капсула, жгутики. Методы их выявлення
5.	Структура бактериальной клетки. Методы выявления спор и кислотоустойчивых бактерий
6.	Морфология и структура спирохет, актиномицетов, грибов и простейших. Методы изучения их морфологии19
7.	Морфология и структура риккетсий, хламидий, микоплазм . Методы их выявлення
8.	Культивирование бактерий, питательные среды. Методы стерилизации, дезинфекции. Методы выделения чистых культур аэробных бактерий (1-й этап исследования). Бактериологический (культуральный) метод диагностики инфекционных заболеваний
9.	Выделение чистых культур аэробных бактерий (2-й этап исследования). Культуральные свойства бактерий
10.	Выделение чистых культур аэробных бактерий (3-й и 4-й этапы исследования). Методы изучения ферментативной активности бактерий
11.	Методы выделения чистых культур анаэробных бактерий (1-5 этапы исследования)
12.	Микробиологические основы антимикробной химиотерапии. Антибиотики
13.	Учение об инфекционном процессе. Биологический метод исследования

14.	Виды иммунитета. Факторы неспецифической защиты организма и методы их исследования	46
15.	Приобретенный иммунитет. Антигены и антитела. Серологический метод микробиологической диагностики инфекционных заболеваний. Реакции преципитации и нейтрализации	49
16.	Реакция агглютинации	.52
17.	Реакция иммунного лизиса (бактериолиз, гемолиз). Реакция связывания комплемента (РСК)	56
18.	Реакции с использованием меченых антигенов и антитил	58
19.	Иммунный статус человека и методы его оценки. Врожденные и приобретенные иммунодефицитные состояния	62
20.	Иммунопрофилактика и иммунотерапия инфекционных болезней	.71
21.	Итоговый контроль усвоения модуля И «Морфология и физиология микроорганизмов. Инфекция. Иммунитет» (Модули 1 – 9)	76
22.]	Вопросы к экзамену по практическим навыкам (модуль 1)	'7